These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 16662651)

  • 1. Malate oxidation, rotenone-resistance, and alternative path activity in plant mitochondria.
    Wiskich JT; Day DA
    Plant Physiol; 1982 Oct; 70(4):959-64. PubMed ID: 16662651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Malate Oxidation in Plant Mitochondria via Malic Enzyme and the Cyanide-insensitive Electron Transport Pathway.
    Rustin P; Moreau F; Lance C
    Plant Physiol; 1980 Sep; 66(3):457-62. PubMed ID: 16661455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of rotenone on respiration in pea cotyledon mitochondria.
    Johnson-Flanagan AM; Spencer MS
    Plant Physiol; 1981 Dec; 68(6):1211-7. PubMed ID: 16662080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Succinate-driven reverse electron transport in the respiratory chain of plant mitochondria. The effects of rotenone and adenylates in relation to malate and oxaloacetate metabolism.
    Rustin P; Lance C
    Biochem J; 1991 Feb; 274 ( Pt 1)(Pt 1):249-55. PubMed ID: 2001241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Malate Oxidation and Cyanide-Insensitive Respiration in Avocado Mitochondria during the Climacteric Cycle.
    Moreau F; Romani R
    Plant Physiol; 1982 Nov; 70(5):1385-90. PubMed ID: 16662684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The oxidation of malate and exogenous reduced nicotinamide adenine dinucleotide by isolated plant mitochondria.
    Day DA; Wiskich JT
    Plant Physiol; 1974 Jan; 53(1):104-9. PubMed ID: 16658636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Malate metabolism in Hoya carnosa mitochondria and its role in photosynthesis during CAM phase III.
    Hong HT; Nose A; Agarie S; Yoshida T
    J Exp Bot; 2008; 59(7):1819-27. PubMed ID: 18403382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial respiration in ME-CAM, PEPCK-CAM, and C₃ succulents: comparative operation of the cytochrome, alternative, and rotenone-resistant pathways.
    Peckmann K; von Willert DJ; Martin CE; Herppich WB
    J Exp Bot; 2012 May; 63(8):2909-19. PubMed ID: 22330897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Properties of Higher Plant Mitochondria. III. Effects of Respiratory Inhibitors.
    Ikuma H; Bonner WD
    Plant Physiol; 1967 Nov; 42(11):1535-44. PubMed ID: 16656690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Effect of Exogenous Nicotinamide Adenine Dinucleotide on the Oxidation of Nicotinamide Adenine Dinucleotide-linked Substrates by Isolated Plant Mitochondria.
    Day DA; Wiskich JT
    Plant Physiol; 1974 Sep; 54(3):360-3. PubMed ID: 16658888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of respiratory inhibitors on NADH, succinate and malate oxidation in corn mitochondria.
    Wilson RH; Hanson JB
    Plant Physiol; 1969 Sep; 44(9):1335-41. PubMed ID: 5379109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of NAD-linked malic enzyme in intact plant mitochondria by exogenous coenzyme A.
    Day DA; Neuburger M; Douce R
    Arch Biochem Biophys; 1984 May; 231(1):233-42. PubMed ID: 6721498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactive oxygen species production in cardiac mitochondria after complex I inhibition: Modulation by substrate-dependent regulation of the NADH/NAD(+) ratio.
    Korge P; Calmettes G; Weiss JN
    Free Radic Biol Med; 2016 Jul; 96():22-33. PubMed ID: 27068062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Malate Metabolism in Leaf Mitochondria from the Crassulacean Acid Metabolism Plant Kalanchoë blossfeldiana Poelln.
    Rustin P; Lance C
    Plant Physiol; 1986 Aug; 81(4):1039-43. PubMed ID: 16664940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppression of the mitochondrial oxidation of (-)-palmitylcarnitine by the malate-aspartate and alpha-glycerophosphate shuttles.
    Lumeng L; Bremer J; Davis EJ
    J Biol Chem; 1976 Jan; 251(2):277-84. PubMed ID: 1245472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of rotenoids on isolated plant mitochondria.
    Ravanel P; Tissut M; Douce R
    Plant Physiol; 1984 Jun; 75(2):414-20. PubMed ID: 16663636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of malate oxidation in plant mitochondria. Response to rotenone and exogenous NAD+.
    Palmer JM; Schwitzguébel JP; Møller IM
    Biochem J; 1982 Dec; 208(3):703-11. PubMed ID: 6819864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of Benzylaminopurine with Electron Transport in Plant Mitochondria during Malate Oxidation.
    Chauveau M; Dizengremel P; Roussaux J
    Plant Physiol; 1983 Dec; 73(4):945-8. PubMed ID: 16663348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The pathways of glutamate and glutamine oxidation by tumor cell mitochondria. Role of mitochondrial NAD(P)+-dependent malic enzyme.
    Moreadith RW; Lehninger AL
    J Biol Chem; 1984 May; 259(10):6215-21. PubMed ID: 6144677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and Oxidative Properties of Intact Mitochondria from the Leaves of Sedum praealtum: A Crassulacean Acid Metabolism Plant.
    Arron GP; Spalding MH; Edwards GE
    Plant Physiol; 1979 Aug; 64(2):182-6. PubMed ID: 16660928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.