These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 16662702)

  • 1. Role of Endogenous Growth Regulators in Seed Dormancy of Avena fatua: I. Short Chain Fatty Acids.
    Metzger JD; Sebesta DK
    Plant Physiol; 1982 Nov; 70(5):1480-5. PubMed ID: 16662702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies in Wild Oat Seed Dormancy: I. THE ROLE OF ETHYLENE IN DORMANCY BREAKAGE AND GERMINATION OF WILD OAT SEEDS (AVENA FATUA L.).
    Adkins SW; Ross JD
    Plant Physiol; 1981 Feb; 67(2):358-62. PubMed ID: 16661675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of Endogenous Plant Growth Regulators in Seed Dormancy of Avena fatua: II. Gibberellins.
    Metzger JD
    Plant Physiol; 1983 Nov; 73(3):791-5. PubMed ID: 16663302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of cDNA clones for differentially expressed genes in embryos of dormant and nondormant Avena fatua L. caryopses.
    Johnson RR; Cranston HJ; Chaverra ME; Dyer WE
    Plant Mol Biol; 1995 Apr; 28(1):113-22. PubMed ID: 7787176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A genetic model and molecular markers for wild oat (Avena fatua L.) seed dormancy.
    Fennimore SA; Nyquist WE; Shaner GE; Doerge RW; Foley ME
    Theor Appl Genet; 1999 Aug; 99(3-4):711-8. PubMed ID: 22665209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exogenous auxin regulates multi-metabolic network and embryo development, controlling seed secondary dormancy and germination in Nicotiana tabacum L.
    Li Z; Zhang J; Liu Y; Zhao J; Fu J; Ren X; Wang G; Wang J
    BMC Plant Biol; 2016 Feb; 16():41. PubMed ID: 26860357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning and characterization of differentially expressed genes in imbibed dormant and afterripened Avena fatua embryos.
    Li B; Foley ME
    Plant Mol Biol; 1995 Nov; 29(4):823-31. PubMed ID: 8541507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Germination induction of dormant Avena fatua caryopses by KAR(1) and GA(3) involving the control of reactive oxygen species (H2O2 and O2(·-)) and enzymatic antioxidants (superoxide dismutase and catalase) both in the embryo and the aleurone layers.
    Cembrowska-Lech D; Koprowski M; Kępczyński J
    J Plant Physiol; 2015 Mar; 176():169-79. PubMed ID: 25618514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Respiration and Protein Synthesis in Dormant and After-ripened Seeds of Avena fatua.
    Chen SS; Varner JE
    Plant Physiol; 1970 Jul; 46(1):108-12. PubMed ID: 16657399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gibberellin-like effects of KAR1 on dormancy release of Avena fatua caryopses include participation of non-enzymatic antioxidants and cell cycle activation in embryos.
    Cembrowska-Lech D; Kępczyński J
    Planta; 2016 Feb; 243(2):531-48. PubMed ID: 26526413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variability of Seed Germination and Dormancy Characteristics and Genetic Analysis of Latvian
    Ņečajeva J; Bleidere M; Jansone Z; Gailīte A; Ruņģis D
    Plants (Basel); 2021 Jan; 10(2):. PubMed ID: 33530398
    [No Abstract]   [Full Text] [Related]  

  • 12. Phenolic and short-chained aliphatic organic acid constituents of wild oat (Avena fatua L.) seeds.
    Gallagher RS; Ananth R; Granger K; Bradley B; Anderson JV; Fuerst EP
    J Agric Food Chem; 2010 Jan; 58(1):218-25. PubMed ID: 20017486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seed Dormancy in Red Rice (Oryza sativa) (IX. Embryo Fructose-2,6-Bisphosphate during Dormancy Breaking and Subsequent Germination).
    Footitt S; Cohn MA
    Plant Physiol; 1995 Apr; 107(4):1365-1370. PubMed ID: 12228440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coleorhiza-enforced seed dormancy: a novel mechanism to control germination in grasses.
    Holloway T; Steinbrecher T; Pérez M; Seville A; Stock D; Nakabayashi K; Leubner-Metzger G
    New Phytol; 2021 Feb; 229(4):2179-2191. PubMed ID: 32970853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining association mapping and transcriptomics identify HD2B histone deacetylase as a genetic factor associated with seed dormancy in Arabidopsis thaliana.
    Yano R; Takebayashi Y; Nambara E; Kamiya Y; Seo M
    Plant J; 2013 Jun; 74(5):815-28. PubMed ID: 23464703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of seed dormancy in Nicotiana plumbaginifolia: post-imbibition abscisic acid synthesis imposes dormancy maintenance.
    Grappin P; Bouinot D; Sotta B; Miginiac E; Jullien M
    Planta; 2000 Jan; 210(2):279-85. PubMed ID: 10664134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal expression patterns of hormone metabolism genes during imbibition of Arabidopsis thaliana seeds: a comparative study on dormant and non-dormant accessions.
    Preston J; Tatematsu K; Kanno Y; Hobo T; Kimura M; Jikumaru Y; Yano R; Kamiya Y; Nambara E
    Plant Cell Physiol; 2009 Oct; 50(10):1786-800. PubMed ID: 19713425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and analysis of proteins that interact with the Avena fatua homologue of the maize transcription factor VIVIPAROUS 1.
    Jones HD; Kurup S; Peters NC; Holdsworth MJ
    Plant J; 2000 Jan; 21(2):133-42. PubMed ID: 10743654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genotype and environment interact to control dormancy and differential expression of the VIVIPAROUS 1 homologue in embryos of Avena fatua.
    Jones HD; Peters NC; Holdsworth MJ
    Plant J; 1997 Oct; 12(4):911-20. PubMed ID: 9375401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Possible role of volatile Fatty acids and abscisic Acid in the dormancy of oats.
    Berrie AM
    Plant Physiol; 1979 Apr; 63(4):758-64. PubMed ID: 16660807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.