These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 16662712)

  • 1. Effect of osmotic stress on photosynthesis studied with the isolated spinach chloroplast : site-specific inhibition of the photosynthetic carbon reduction cycle.
    Berkowitz GA; Gibbs M
    Plant Physiol; 1982 Nov; 70(5):1535-40. PubMed ID: 16662712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced osmotic potential inhibition of photosynthesis : site-specific effects of osmotically induced stromal acidification.
    Berkowitz GA; Gibbs M
    Plant Physiol; 1983 Aug; 72(4):1100-9. PubMed ID: 16663127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of photosynthetic carbon dioxide fixation in isolated spinach chloroplasts exposed to reduced osmotic potentials.
    Plaut Z
    Plant Physiol; 1971 Nov; 48(5):591-5. PubMed ID: 16657842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of osmotic stress on photosynthesis studied with the isolated spinach chloroplast : generation and use of reducing power.
    Berkowitz GA; Gibbs M
    Plant Physiol; 1982 Oct; 70(4):1143-8. PubMed ID: 16662629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photosynthetic enhancement studied in intact spinach chloroplasts.
    Peavey DG; Gibbs M
    Plant Physiol; 1975 May; 55(5):799-802. PubMed ID: 16659171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced osmotic potential effects on photosynthesis : identification of stromal acidification as a mediating factor.
    Berkowitz GA; Gibbs M
    Plant Physiol; 1983 Apr; 71(4):905-11. PubMed ID: 16662927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of Photosynthetic Carbon Reduction Cycle Intermediates in CO(2) Fixation and O(2) Evolution by Isolated Chloroplasts.
    Schacter B; Eley JH; Gibbs M
    Plant Physiol; 1971 Dec; 48(6):707-11. PubMed ID: 16657865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Level of photosynthetic intermediates in isolated spinach chloroplasts.
    Latzko E; Gibbs M
    Plant Physiol; 1969 Mar; 44(3):396-402. PubMed ID: 16657074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The metabolic significance of octulose phosphates in the photosynthetic carbon reduction cycle in spinach.
    Williams JF; MacLeod JK
    Photosynth Res; 2006 Nov; 90(2):125-48. PubMed ID: 17160443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of glycerate on photosynthesis by wheat chloroplasts.
    Edwards GE; Walker DA
    Arch Biochem Biophys; 1984 May; 231(1):124-35. PubMed ID: 6326672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of sedoheptulose-1,7-bisphosphatase by sedoheptulose-7-phosphate and glycerate, and of fructose-1,6-bisphosphatase by glycerate in spinach chloroplasts.
    Schimkat D; Heineke D; Heldt HW
    Planta; 1990 Apr; 181(1):97-103. PubMed ID: 24196680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of photosynthesis by oxygen in isolated spinach chloroplasts.
    Ellyard PW; Gibbs M
    Plant Physiol; 1969 Aug; 44(8):1115-21. PubMed ID: 16657176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of photosynthetic carbon metabolism during phosphate limitation of photosynthesis in isolated spinach chloroplasts.
    Giersch C; Robinson SP
    Photosynth Res; 1987 Jan; 14(3):211-27. PubMed ID: 24430736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ribulose-1,5-bisphosphate carboxylase-oxygenase, other Calvin-cycle enzymes, and chlorophyll decrease when glucose is supplied to mature spinach leaves via the transpiration stream.
    Krapp A; Quick WP; Stitt M
    Planta; 1991 Dec; 186(1):58-69. PubMed ID: 24186575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osmotic adjustment by intact isolated chloroplasts in response to osmotic stress and its effect on photosynthesis and chloroplast volume.
    Robinson SP
    Plant Physiol; 1985 Dec; 79(4):996-1002. PubMed ID: 16664560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perturbation of photosynthesis in spinach leaf discs by low concentrations of methyl viologen : Influence of increased thylakoid energisation on ATP synthesis, electron transport, energy dissipation, light-activation of the calvin-cycle enzymes, and control of starch and sucrose synthesis.
    Ekkehard H; Stitt M
    Planta; 1989 Aug; 179(1):51-60. PubMed ID: 24201421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of chloroplastic respiration by osmotic dehydration.
    Willeford KO; Ahluwalia KJ; Gibbs M
    Plant Physiol; 1989 Apr; 89(4):1158-60. PubMed ID: 16666679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The glyceraldehyde 3-phosphate and glycerate 3-phosphate shuttle and carbon dioxide assimilation in intact spinach chloroplasts.
    Bamberger ES; Ehrlich BA; Gibbs M
    Plant Physiol; 1975 Jun; 55(6):1023-30. PubMed ID: 16659203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of inorganic phosphate on the photosynthetic carbon reduction cycle in extracts from the stroma of pea chloroplasts.
    Furbank RT; Lilley RM
    Biochim Biophys Acta; 1980 Aug; 592(1):65-75. PubMed ID: 6772219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphate sequestration by glycerol and its effects on photosynthetic carbon assimilation by leaves.
    Leegood RC; Labate CA; Huber SC; Neuhaus HE; Stitt M
    Planta; 1988 Nov; 176(1):117-26. PubMed ID: 24220742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.