These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 16662802)

  • 1. Relationships between Photosynthetically Active Radiation, Nocturnal Acid Accumulation, and CO(2) Uptake for a Crassulacean Acid Metabolism Plant, Opuntia ficus-indica.
    Nobel PS; Hartsock TL
    Plant Physiol; 1983 Jan; 71(1):71-5. PubMed ID: 16662802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water Relations, Diurnal Acidity Changes, and Productivity of a Cultivated Cactus, Opuntia ficus-indica.
    Acevedo E; Badilla I; Nobel PS
    Plant Physiol; 1983 Jul; 72(3):775-80. PubMed ID: 16663084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental dynamics of crassulacean acid metabolism (CAM) in Opuntia ficus-indica.
    Niechayev NA; Mayer JA; Cushman JC
    Ann Bot; 2023 Nov; 132(4):869-879. PubMed ID: 37256773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leaf and Stem CO(2) Uptake in the Three Subfamilies of the Cactaceae.
    Nobel PS; Hartsock TL
    Plant Physiol; 1986 Apr; 80(4):913-7. PubMed ID: 16664741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crassulacean Acid Metabolism and Photochemical Efficiency of Photosystem II in the Adaxial and Abaxial Parts of the Succulent Leaves of Kalanchoë daigremontiana Grown at Four Photon Flux Densities.
    Winter K; Awender G
    Plant Physiol; 1989 Jul; 90(3):948-54. PubMed ID: 16666903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Irradiance on Crassulacean Acid Metabolism in the Epiphyte Tillandsia usneoides L. (Bromeliaceae).
    Martin CE; Eades CA; Pitner RA
    Plant Physiol; 1986 Jan; 80(1):23-6. PubMed ID: 16664587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light, chlorophyll, carboxylase activity and CO
    Nobel PS; Cui M; Israel AA
    New Phytol; 1994 Oct; 128(2):315-322. PubMed ID: 33874370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of Applied NaCl on Crassulacean Acid Metabolism and Ionic Levels in a Cactus, Cereus validus.
    Nobel PS; Lüttge U; Heuer S; Ball E
    Plant Physiol; 1984 Jul; 75(3):799-803. PubMed ID: 16663707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photosynthesis of Grass Species Differing in Carbon Dioxide Fixation Pathways : VI. DIFFERENTIAL EFFECTS OF TEMPERATURE AND LIGHT INTENSITY ON PHOTORESPIRATION IN C(3), C(4), AND INTERMEDIATE SPECIES.
    Brown RH; Morgan JA
    Plant Physiol; 1980 Oct; 66(4):541-4. PubMed ID: 16661473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Achievable productivities of certain CAM plants: basis for high values compared with C
    Nobel PS
    New Phytol; 1991 Oct; 119(2):183-205. PubMed ID: 33874131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photosynthesis of Littorella uniflora grown under two PAR regimes: C
    Robe WE; Griffiths H
    Oecologia; 1990 Nov; 85(1):128-136. PubMed ID: 28310965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of Ribulose-1,5-Bisphosphate Carboxylase Activity in Response to Light Intensity and CO(2) in the C(3) Annuals Chenopodium album L. and Phaseolus vulgaris L.
    Sage RF; Sharkey TD; Seemann JR
    Plant Physiol; 1990 Dec; 94(4):1735-42. PubMed ID: 16667910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light quality and osmoregulation in vicia guard cells : evidence for involvement of three metabolic pathways.
    Tallman G; Zeiger E
    Plant Physiol; 1988 Nov; 88(3):887-95. PubMed ID: 16666400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resistance Analysis of Nocturnal Carbon Dioxide Uptake by a Crassulacean Acid Metabolism Succulent, Agave deserti.
    Nobel PS; Hartsock TL
    Plant Physiol; 1978 Apr; 61(4):510-4. PubMed ID: 16660326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth and tuberization of potato (Solanum tuberosum L.) under continuous light.
    Wheeler RM; Tibbitts TW
    Plant Physiol; 1986; 80(3):801-4. PubMed ID: 11539039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diel Patterns of Water Potential Components for the Crassulacean Acid Metabolism Plant Opuntia ficus-indica when Well-Watered or Droughted.
    Goldstein G; Ortega JK; Nerd A; Nobel PS
    Plant Physiol; 1991 Jan; 95(1):274-80. PubMed ID: 16667964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CO2 Exchange and Growth of the Crassulacean Acid Metabolism Plant Opuntia ficus-indica under Elevated CO2 in Open-Top Chambers.
    Cui M; Miller PM; Nobel PS
    Plant Physiol; 1993 Oct; 103(2):519-524. PubMed ID: 12231958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the limits of crop productivity. I. Photosynthetic efficiency of wheat in high irradiance environments.
    Bugbee BG; Salisbury FB
    Plant Physiol; 1988; 88(3):869-78. PubMed ID: 11537442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic profiling of epidermal and mesophyll tissues under water-deficit stress in Opuntia ficus-indica reveals stress-adaptive metabolic responses.
    Mayer JA; Wone BWM; Alexander DC; Guo L; Ryals JA; Cushman JC
    Funct Plant Biol; 2021 Jun; 48(7):717-731. PubMed ID: 33896444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Respiratory CO(2) as Carbon Source for Nocturnal Acid Synthesis at High Temperatures in Three Species Exhibiting Crassulacean Acid Metabolism.
    Winter K; Schröppel-Meier G; Caldwell MM
    Plant Physiol; 1986 Jun; 81(2):390-4. PubMed ID: 16664827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.