These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 16662901)

  • 41. Effect of cold hardening on sensitivity of winter and spring wheat leaves to short-term photoinhibition and recovery of photosynthesis.
    Hurry VM; Huner NP
    Plant Physiol; 1992 Nov; 100(3):1283-90. PubMed ID: 16653118
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effect of water, sugars, and proteins on the pattern of ice nucleation and propagation in acclimated and nonacclimated canola leaves.
    Gusta LV; Wisniewski M; Nesbitt NT; Gusta ML
    Plant Physiol; 2004 Jul; 135(3):1642-53. PubMed ID: 15247390
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bacterial Ice Nucleation in Monodisperse D2O and H2O-in-Oil Emulsions.
    Weng L; Tessier SN; Smith K; Edd JF; Stott SL; Toner M
    Langmuir; 2016 Sep; 32(36):9229-36. PubMed ID: 27495973
    [TBL] [Abstract][Full Text] [Related]  

  • 44. How Can Ice Emerge at 0 °C?
    Finkelstein AV; Garbuzynskiy SO; Melnik BS
    Biomolecules; 2022 Jul; 12(7):. PubMed ID: 35883537
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Arabidopsis thaliana avoids freezing by supercooling.
    Reyes-Díaz M; Ulloa N; Zúñiga-Feest A; Gutiérrez A; Gidekel M; Alberdi M; Corcuera LJ; Bravo LA
    J Exp Bot; 2006; 57(14):3687-96. PubMed ID: 16990371
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Supercooling as a potentially improved storage option for commercial kimchi.
    Kim J; Choi DS; Kim YH; Son JY; Park CW; Park SH; Hwang Y
    J Food Sci; 2021 Mar; 86(3):749-761. PubMed ID: 33604898
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ice nucleation on BaF2(111).
    Conrad P; Ewing GE; Karlinsey RL; Sadtchenko V
    J Chem Phys; 2005 Feb; 122(6):064709. PubMed ID: 15740398
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [A comparative analysis of the ice nucleation activity of pseudomonad cells and lipopolysaccharides].
    Zdorovenko GM; Veremeĭchenko SN; Kipriianova EA
    Mikrobiologiia; 2004; 73(4):504-10. PubMed ID: 15521177
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Supercooling and freezing as eco-physiological alternatives rather than mutually exclusive strategies: A case study in Pyrrhocoris apterus.
    Rozsypal J; Košťál V
    J Insect Physiol; 2018; 111():53-62. PubMed ID: 30393171
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Freezing Characteristics of Rigid Plant Tissues (Development of Cell Tension during Extracellular Freezing).
    Rajashekar CB; Burke MJ
    Plant Physiol; 1996 Jun; 111(2):597-603. PubMed ID: 12226313
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biomass combustion produces ice-active minerals in biomass-burning aerosol and bottom ash.
    Jahn LG; Polen MJ; Jahl LG; Brubaker TA; Somers J; Sullivan RC
    Proc Natl Acad Sci U S A; 2020 Sep; 117(36):21928-21937. PubMed ID: 32839314
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ice nucleation activity in lichens.
    Kieft TL
    Appl Environ Microbiol; 1988 Jul; 54(7):1678-81. PubMed ID: 16347678
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ice segregation in the crown of winter cereals: Evidence for extraorgan and extratissue freezing.
    Willick IR; Gusta LV; Fowler DB; Tanino KK
    Plant Cell Environ; 2019 Feb; 42(2):701-716. PubMed ID: 30291635
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The cost of avoiding freezing in stems: trade-off between xylem resistance to cavitation and supercooling capacity in woody plants.
    Arias NS; Scholz FG; Goldstein G; Bucci SJ
    Tree Physiol; 2017 Sep; 37(9):1251-1262. PubMed ID: 28633378
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Survival of Ice Nucleation-Active and Genetically Engineered Non-Ice-Nucleating Pseudomonas syringae Strains after Freezing.
    Buttner MP; Amy PS
    Appl Environ Microbiol; 1989 Jul; 55(7):1690-4. PubMed ID: 16347963
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization and Quantification of Intrinsic Ice Nucleators in Winter Rye (Secale cereale) Leaves.
    Brush RA; Griffith M; Mlynarz A
    Plant Physiol; 1994 Feb; 104(2):725-735. PubMed ID: 12232122
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ice Nucleation Activity in Plants: The Distribution, Characterization, and Their Roles in Cold Hardiness Mechanisms.
    Ishikawa M; Yamazaki H; Kishimoto T; Murakawa H; Stait-Gardner T; Kuchitsu K; Price WS
    Adv Exp Med Biol; 2018; 1081():99-115. PubMed ID: 30288706
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Topical application of ice-nucleating-active bacteria decreases insect cold tolerance.
    Strong-Gunderson JM; Lee RE; Lee MR
    Appl Environ Microbiol; 1992 Sep; 58(9):2711-6. PubMed ID: 16348764
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Expression of ice recrystallization inhibition protein in transgenic potato lines associated with reduced electrolyte leakage and efficient recovery post freezing injury.
    Aaliya K; Nasir IA; Khan A; Toufiq N; Yousaf I; Adeyinka OS; Iftikhar S; Farooq AM; Tabassum B
    J Biotechnol; 2021 Feb; 327():97-105. PubMed ID: 33450348
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Supercooling Capacity Increases from Sea Level to Tree Line in the Hawaiian Tree Species Metrosideros polymorpha.
    Melcher PJ; Cordell S; Jones TJ; Scowcroft PG; Niemczura W; Giambelluca TW; Goldstein G
    Int J Plant Sci; 2000 May; 161(3):369-379. PubMed ID: 10817972
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.