These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 16662998)

  • 1. Diurnal variation in the functioning of cowpea nodules.
    Rainbird RM; Atkins CA; Pate JS
    Plant Physiol; 1983 Jun; 72(2):308-12. PubMed ID: 16662998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of temperature on nitrogenase functioning in cowpea nodules.
    Rainbird RM; Atkins CA; Pate JS
    Plant Physiol; 1983 Oct; 73(2):392-4. PubMed ID: 16663226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental determination of the respiration associated with soybean/rhizobium nitrogenase function, nodule maintenance, and total nodule nitrogen fixation.
    Rainbird RM; Hitz WD; Hardy RW
    Plant Physiol; 1984 May; 75(1):49-53. PubMed ID: 16663599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of pO(2) on Growth and Nodule Functioning of Symbiotic Cowpea (Vigna unguiculata L. Walp.).
    Dakora FD; Atkins CA
    Plant Physiol; 1990 Jul; 93(3):948-55. PubMed ID: 16667605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrogen nutrition and the development of biochemical functions associated with nitrogen fixation and ammonia assimilation of nodules on cowpea seedlings.
    Atkins CA; Shelp BJ; Storer PJ; Pate JS
    Planta; 1984 Oct; 162(4):327-33. PubMed ID: 24253166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Economy of Photosynthate Use in Nitrogen-fixing Legume Nodules: Observations on Two Contrasting Symbioses.
    Layzell DB; Rainbird RM; Atkins CA; Pate JS
    Plant Physiol; 1979 Nov; 64(5):888-91. PubMed ID: 16661076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of short-term n(2) deficiency on N metabolism in legume nodules.
    Atkins CA; Pate JS; Shelp BJ
    Plant Physiol; 1984 Nov; 76(3):705-10. PubMed ID: 16663910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. De Novo Purine Synthesis in Nitrogen-Fixing Nodules of Cowpea (Vigna unguiculata [L.] Walp.) and Soybean (Glycine max [L.] Merr.).
    Atkins CA; Ritchie A; Rowe PB; McCairns E; Sauer D
    Plant Physiol; 1982 Jul; 70(1):55-60. PubMed ID: 16662479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathways of Nitrogen Assimilation in Cowpea Nodules Studied using N(2) and Allopurinol.
    Atkins CA; Storer PJ; Pate JS
    Plant Physiol; 1988 Jan; 86(1):204-7. PubMed ID: 16665867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Allantoin and Allantoic Acid in the Nitrogen Economy of the Cowpea (Vigna unguiculata [L.] Walp.).
    Herridge DF; Atkins CA; Pate JS; Rainbird RM
    Plant Physiol; 1978 Oct; 62(4):495-8. PubMed ID: 16660546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbohydrate supply and n(2) fixation in soybean : the effect of varied daylength and stem girdling.
    Walsh KB; Vessey JK; Layzell DB
    Plant Physiol; 1987 Sep; 85(1):137-44. PubMed ID: 16665645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of oxygen pressure on synthesis and export of nitrogenous solutes by nodules of cowpea.
    Atkins CA; Dakora FD; Storer PJ
    Planta; 1990 Nov; 182(4):565-71. PubMed ID: 24197378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of nodule functioning in cowpea by a xanthine oxidoreductase inhibitor, allopurinol.
    Atkins CA; Sanford PJ; Storer PJ; Pate JS
    Plant Physiol; 1988 Dec; 88(4):1229-34. PubMed ID: 16666449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of short-term N(2) deficiency on expression of the ureide pathway in cowpea root nodules.
    Smith PM; Winter H; Storer PJ; Bussell JD; Schuller KA; Atkins CA
    Plant Physiol; 2002 Jul; 129(3):1216-21. PubMed ID: 12114575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tobacco mutants with a decreased number of functional nia genes compensate by modifying the diurnal regulation of transcription, post-translational modification and turnover of nitrate reductase.
    Scheible WR; González-Fontes A; Morcuende R; Lauerer M; Geiger M; Glaab J; Gojon A; Schulze ED; Stitt M
    Planta; 1997; 203(3):304-19. PubMed ID: 9431679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymes of Purine Biosynthesis and Catabolism in Glycine max: I. COMPARISON OF ACTIVITIES WITH N(2) FIXATION AND COMPOSITION OF XYLEM EXUDATE DURING NODULE DEVELOPMENT.
    Schubert KR
    Plant Physiol; 1981 Nov; 68(5):1115-22. PubMed ID: 16662061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Significance of hydrogen evolution in the carbon and nitrogen economy of nodulated cowpea.
    Rainbird RM; Atkins CA; Pate JS; Sanford P
    Plant Physiol; 1983 Jan; 71(1):122-7. PubMed ID: 16662769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrogen nutrition and the development and senescence of nodules on cowpea seedlings.
    Atkins CA; Shelp BJ; Kuo J; Peoples MB; Pate JS
    Planta; 1984 Oct; 162(4):316-26. PubMed ID: 24253165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of the host legume on acetylene reduction and hydrogen evolution by Rhizobium nitrogenase.
    Edie SA; Phillips DA
    Plant Physiol; 1983 May; 72(1):156-60. PubMed ID: 16662950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Economy of Carbon and Nitrogen in Nodulated and Nonnodulated (NO(3)-grown) Cowpea [Vigna unguiculata (L.) Walp.].
    Atkins CA; Pate JS; Griffiths GJ; White ST
    Plant Physiol; 1980 Nov; 66(5):978-83. PubMed ID: 16661564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.