These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 16663084)

  • 1. Water Relations, Diurnal Acidity Changes, and Productivity of a Cultivated Cactus, Opuntia ficus-indica.
    Acevedo E; Badilla I; Nobel PS
    Plant Physiol; 1983 Jul; 72(3):775-80. PubMed ID: 16663084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationships between Photosynthetically Active Radiation, Nocturnal Acid Accumulation, and CO(2) Uptake for a Crassulacean Acid Metabolism Plant, Opuntia ficus-indica.
    Nobel PS; Hartsock TL
    Plant Physiol; 1983 Jan; 71(1):71-5. PubMed ID: 16662802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental dynamics of crassulacean acid metabolism (CAM) in Opuntia ficus-indica.
    Niechayev NA; Mayer JA; Cushman JC
    Ann Bot; 2023 Nov; 132(4):869-879. PubMed ID: 37256773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Young daughter cladodes affect CO2 uptake by mother cladodes of Opuntia ficus-indica.
    Pimienta-Barrios E; Zañudo-Hernandez J; Rosas-Espinoza VC; Valenzuela-Tapia A; Nobel PS
    Ann Bot; 2005 Jan; 95(2):363-9. PubMed ID: 15567805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First Report of Pythium aphanidermatum Causing Crown and Stem Rot on Opuntia ficus-indica.
    Rodríguez-Alvarado G; Fernández-Pavía SP; Landa-Hernández L
    Plant Dis; 2001 Feb; 85(2):231. PubMed ID: 30831960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tolerances and acclimation to low and high temperatures for cladodes, fruits and roots of a widely cultivated cactus, Opuntia ficus-indica.
    Nobel PS; De la Barrera E
    New Phytol; 2003 Feb; 157(2):271-279. PubMed ID: 33873630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of cultivar and origin on the flavonol profile of fruits and cladodes from cactus Opuntia ficus-indica.
    Moussa-Ayoub TE; Abd El-Hady EA; Omran HT; El-Samahy SK; Kroh LW; Rohn S
    Food Res Int; 2014 Oct; 64():864-872. PubMed ID: 30011726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interception of photosynthetically active radiation by cacti of different morphology.
    Nobel PS
    Oecologia; 1980 May; 45(2):160-166. PubMed ID: 28309525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does cladode inclination restrict microhabitat distribution for Opuntia puberula (Cactaceae)?
    Sortibrán L; Tinoco-Ojanguren C; Terrazas T; Valiente-Banuet A
    Am J Bot; 2005 Apr; 92(4):700-8. PubMed ID: 21652449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CO2 Exchange and Growth of the Crassulacean Acid Metabolism Plant Opuntia ficus-indica under Elevated CO2 in Open-Top Chambers.
    Cui M; Miller PM; Nobel PS
    Plant Physiol; 1993 Oct; 103(2):519-524. PubMed ID: 12231958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Achievable productivities of certain CAM plants: basis for high values compared with C
    Nobel PS
    New Phytol; 1991 Oct; 119(2):183-205. PubMed ID: 33874131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water relations and photosynthesis of a barrel cactus, Ferocactus acanthodes, in the Colorado desert.
    Nobel PS
    Oecologia; 1977 Jun; 27(2):117-133. PubMed ID: 28309721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic profiling of epidermal and mesophyll tissues under water-deficit stress in Opuntia ficus-indica reveals stress-adaptive metabolic responses.
    Mayer JA; Wone BWM; Alexander DC; Guo L; Ryals JA; Cushman JC
    Funct Plant Biol; 2021 Jun; 48(7):717-731. PubMed ID: 33896444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential of Opuntia ficus-indica for air pollution biomonitoring: a lead isotopic study.
    El Hayek E; El Samrani A; Lartiges B; Kazpard V; Benoit M; Munoz M
    Environ Sci Pollut Res Int; 2015 Nov; 22(22):17799-809. PubMed ID: 26160126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light, chlorophyll, carboxylase activity and CO
    Nobel PS; Cui M; Israel AA
    New Phytol; 1994 Oct; 128(2):315-322. PubMed ID: 33874370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling nonlinear dynamics of Crassulacean acid metabolism productivity and water use for global predictions.
    Hartzell S; Bartlett MS; Inglese P; Consoli S; Yin J; Porporato A
    Plant Cell Environ; 2021 Jan; 44(1):34-48. PubMed ID: 33073369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction among species, time-of-day, and soil water potential on biochemical and physiological characteristics of cladodes of Opuntia.
    López Navarrete MC; Peña-Valdivia CB; Trejo C; Padilla Chacón D; García N R; Martínez B E
    Plant Physiol Biochem; 2021 May; 162():185-195. PubMed ID: 33684777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pathogens Associated with Necrosis of Cactus Pear Cladodes in South Africa.
    Swart WJ; Kriel WM
    Plant Dis; 2002 Jun; 86(6):693. PubMed ID: 30823253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leaf and Stem CO(2) Uptake in the Three Subfamilies of the Cactaceae.
    Nobel PS; Hartsock TL
    Plant Physiol; 1986 Apr; 80(4):913-7. PubMed ID: 16664741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drought-stress-induced up-regulation of CAM in seedlings of a tropical cactus, Opuntia elatior, operating predominantly in the C3 mode.
    Winter K; Garcia M; Holtum JA
    J Exp Bot; 2011 Jul; 62(11):4037-42. PubMed ID: 21504876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.