These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 16663087)

  • 1. Rate-Limiting Steps of Electron Transport in Chloroplasts during Ontogeny and Senescence of Barley.
    Holloway PJ; Maclean DJ; Scott KJ
    Plant Physiol; 1983 Jul; 72(3):795-801. PubMed ID: 16663087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of plastocyanin in the adjustment of the photosynthetic electron transport to the carbon metabolism in tobacco.
    Schöttler MA; Kirchhoff H; Weis E
    Plant Physiol; 2004 Dec; 136(4):4265-74. PubMed ID: 15563617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron flow to photosystem I from stromal reductants in vivo: the size of the pool of stromal reductants controls the rate of electron donation to both rapidly and slowly reducing photosystem I units.
    Bukhov N; Egorova E; Carpentier R
    Planta; 2002 Sep; 215(5):812-20. PubMed ID: 12244447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultra-structural and functional changes in the chloroplasts of detached barley leaves senescing under dark and light conditions.
    Spundová M; Popelková H; Ilík P; Skotnica J; Novotný R; Naus J
    J Plant Physiol; 2003 Sep; 160(9):1051-8. PubMed ID: 14593806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron transport between plastoquinone and chlorophyll Ai in chloroplasts. II. Reaction kinetics and the function of plastocyanin in situ.
    Haehnel W
    Biochim Biophys Acta; 1977 Mar; 459(3):418-41. PubMed ID: 849434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plastocyanin redox kinetics in spinach chloroplasts: evidence for disequilibrium in the high potential chain.
    Kirchhoff H; Schöttler MA; Maurer J; Weis E
    Biochim Biophys Acta; 2004 Nov; 1659(1):63-72. PubMed ID: 15511528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The photochemical activities and electron carriers of developing barley leaves.
    Plesnicar M; Bendall DS
    Biochem J; 1973 Nov; 136(3):803-12. PubMed ID: 4780703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An alternative strategy of dismantling of the chloroplasts during leaf senescence observed in a high-yield variety of barley.
    Krupinska K; Mulisch M; Hollmann J; Tokarz K; Zschiesche W; Kage H; Humbeck K; Bilger W
    Physiol Plant; 2012 Feb; 144(2):189-200. PubMed ID: 22098170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of the thylakoidal NADH-plastoquinone-oxidoreductase complex in the early responses to ozone exposure of barley (Hordeum vulgare L.) seedlings.
    Guéra A; Calatayud A; Sabater B; Barreno E
    J Exp Bot; 2005 Jan; 56(409):205-18. PubMed ID: 15557294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in gene expression between natural and artificially induced leaf senescence in barley.
    Springer A; Acker G; Bartsch S; Bauerschmitt H; Reinbothe S; Reinbothe C
    J Plant Physiol; 2015 Mar; 176():180-91. PubMed ID: 25637827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of reactive oxygen species in thylakoids from senescing flag leaves of the barley varieties Lomerit and Carina.
    Krieger-Liszkay A; Trösch M; Krupinska K
    Planta; 2015 Jun; 241(6):1497-508. PubMed ID: 25788024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of cytochrome b6f at low and high light intensity and cyclic electron transport in leaves.
    Laisk A; Eichelmann H; Oja V; Peterson RB
    Biochim Biophys Acta; 2005 Jun; 1708(1):79-90. PubMed ID: 15949986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stoichiometries of electron transport complexes in spinach chloroplasts.
    Whitmarsh J; Ort DR
    Arch Biochem Biophys; 1984 Jun; 231(2):378-89. PubMed ID: 6375572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The abundance of minor chlorophyll a/b-binding proteins CP29 and LHCI of barley (Hordeum vulgare L.) during leaf senescence is controlled by light.
    Humbeck K; Krupinska K
    J Exp Bot; 2003 Jan; 54(381):375-83. PubMed ID: 12493866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exogenous application of cytokinin during dark senescence eliminates the acceleration of photosystem II impairment caused by chlorophyll b deficiency in barley.
    Janečková H; Husičková A; Lazár D; Ferretti U; Pospíšil P; Špundová M
    Plant Physiol Biochem; 2019 Mar; 136():43-51. PubMed ID: 30639921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction of the thylakoid electron transport chain by stromal reductants--evidence for activation of cyclic electron transport upon dark adaptation or under drought.
    Golding AJ; Finazzi G; Johnson GN
    Planta; 2004 Dec; 220(2):356-63. PubMed ID: 15316779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photosystem II Activity in Agranal Bundle Sheath Chloroplasts from Zea mays.
    Andersen KS; Bain JM; Bishop DG; Smillie RM
    Plant Physiol; 1972 Apr; 49(4):461-6. PubMed ID: 16657984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthesis of P700-Chlorophyll a Protein Complex, Plastocyanin, and Cytochrome b(6)/f Complex.
    Takabe T; Takabe T; Akazawa T
    Plant Physiol; 1986 May; 81(1):60-6. PubMed ID: 16664808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Equilibration between cytochrome f and P700 in intact leaves.
    Golding AJ; Joliot P; Johnson GN
    Biochim Biophys Acta; 2005 Jan; 1706(1-2):105-9. PubMed ID: 15620370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The properties of cytochrome f and P700 in chloroplasts suspended in fluid media at sub-zero temperatures.
    Cox RP
    Eur J Biochem; 1975 Jul; 55(3):625-31. PubMed ID: 1175616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.