These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 16663105)

  • 41. Adapting the Accelerated Solvent Extraction Method for Resin and Rubber Determination in Guayule Using the BÜCHI Speed Extractor.
    Rozalén J; García-Martínez MM; Carrión ME; Carmona M; López-Córcoles H; Cornish K; Zalacain A
    Molecules; 2021 Jan; 26(1):. PubMed ID: 33401499
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Incorporation of deuterium-labelled analogs of isopentenyl diphosphate for the elucidation of the stereochemistry of rubber biosynthesis.
    Scholte AA; Vederas JC
    Org Biomol Chem; 2006 Feb; 4(4):730-42. PubMed ID: 16467948
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Guayule and Russian dandelion as alternative sources of natural rubber.
    van Beilen JB; Poirier Y
    Crit Rev Biotechnol; 2007; 27(4):217-31. PubMed ID: 18085463
    [TBL] [Abstract][Full Text] [Related]  

  • 44. FRUCTOSAN, A RESERVE CARBOHYDRATE IN GUAYULE, PARTHENIUM ARGENTATUM GRAY.
    McRary WL; Traub HP
    Science; 1944 May; 99(2578):435-6. PubMed ID: 17810630
    [No Abstract]   [Full Text] [Related]  

  • 45. Fertilization without Reduction in Guayule (Parthenium Argentatum Gray) and a Hypothesis as to the Evolution of Apomixis and Polyploidy.
    Powers L
    Genetics; 1945 Jul; 30(4):323-46. PubMed ID: 17247162
    [No Abstract]   [Full Text] [Related]  

  • 46. Levulins and Inulin in Guayule, Parthenium argentatum A. Gray.
    Traub HP; Slattery MC
    Plant Physiol; 1947 Jan; 22(1):77-87. PubMed ID: 16654081
    [No Abstract]   [Full Text] [Related]  

  • 47. MODE OF OCCURRENCE OF CAOUTCHOUC IN THE GUAYULE, PARTHENIUM ARGENTATUM GRAY, AND ITS FUNCTION.
    Lloyd FE
    Plant Physiol; 1932 Jan; 7(1):131-138.1. PubMed ID: 16652752
    [No Abstract]   [Full Text] [Related]  

  • 48. Aerobic Decomposition of Guayule Shrub (Parthenium argentatum Gray).
    Naghski J; White JW; Hoover SR
    J Bacteriol; 1944 Aug; 48(2):159-78. PubMed ID: 16560825
    [No Abstract]   [Full Text] [Related]  

  • 49. Author Correction: Composition of Guayule (Parthenium argentatum Gray) resin.
    Rousset A; Ginies C; Chevallier O; Martinez-Vazquez M; Amor A; Dorget M; Chemat F; Perino S
    Sci Rep; 2023 Apr; 13(1):6322. PubMed ID: 37072444
    [No Abstract]   [Full Text] [Related]  

  • 50. Initiation of rubber biosynthesis: In vitro comparisons of benzophenone-modified diphosphate analogues in three rubber-producing species.
    Xie W; McMahan CM; Degraw AJ; Distefano MD; Cornish K; Whalen MC; Shintani DK
    Phytochemistry; 2008 Oct; 69(14):2539-45. PubMed ID: 18799172
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Oils and rubber from arid land plants.
    Johnson JD; Hinman CW
    Science; 1980 May; 208(4443):460-4. PubMed ID: 17744536
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Modular assembly of transposable element arrays by microsatellite targeting in the guayule and rice genomes.
    Valdes Franco JA; Wang Y; Huo N; Ponciano G; Colvin HA; McMahan CM; Gu YQ; Belknap WR
    BMC Genomics; 2018 Apr; 19(1):271. PubMed ID: 29673330
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Similarities and differences in rubber biochemistry among plant species.
    Cornish K
    Phytochemistry; 2001 Aug; 57(7):1123-34. PubMed ID: 11430985
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Initiator-independent and initiator-dependent rubber biosynthesis in Ficus elastica.
    Espy SC; Keasling JD; Castillón J; Cornish K
    Arch Biochem Biophys; 2006 Apr; 448(1-2):13-22. PubMed ID: 16488387
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microstructure of Purified Rubber Particles.
    Wood DF; Cornish K
    Int J Plant Sci; 2000 May; 161(3):435-445. PubMed ID: 10817979
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Activation and inhibition of rubber transferases by metal cofactors and pyrophosphate substrates.
    Scott DJ; da Costa BM; Espy SC; Keasling JD; Cornish K
    Phytochemistry; 2003 Sep; 64(1):123-34. PubMed ID: 12946411
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Unusual subunits are directly involved in binding substrates for natural rubber biosynthesis in multiple plant species.
    Cornish K; Scott DJ; Xie W; Mau CJD; Zheng YF; Liu XH; Prestwich GD
    Phytochemistry; 2018 Dec; 156():55-72. PubMed ID: 30195165
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Rubber elongation by farnesyl pyrophosphate synthases involves a novel switch in enzyme stereospecificity.
    Light DR; Lazarus RA; Dennis MS
    J Biol Chem; 1989 Nov; 264(31):18598-607. PubMed ID: 2808389
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Purification of a prenyltransferase that elongates cis-polyisoprene rubber from the latex of Hevea brasiliensis.
    Light DR; Dennis MS
    J Biol Chem; 1989 Nov; 264(31):18589-97. PubMed ID: 2808388
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cross-reactivity of alternate plant sources of latex in subjects with systemic IgE-mediated sensitivity to Hevea brasiliensis latex.
    Carey AB; Cornish K; Schrank P; Ward B; Simon R
    Ann Allergy Asthma Immunol; 1995 Apr; 74(4):317-20. PubMed ID: 7719892
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.