These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 16663149)

  • 1. Effect of cold acclimation on intracellular ice formation in isolated protoplasts.
    Dowgert MF; Steponkus PL
    Plant Physiol; 1983 Aug; 72(4):978-88. PubMed ID: 16663149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative analysis of the probability of intracellular ice formation during freezing of isolated protoplasts.
    Pitt RE; Steponkus PL
    Cryobiology; 1989 Feb; 26(1):44-63. PubMed ID: 2924592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Freeze-Induced Membrane Ultrastructural Alterations in Rye (Secale cereale) Leaves.
    Webb MS; Steponkus PL
    Plant Physiol; 1993 Mar; 101(3):955-963. PubMed ID: 12231747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of cold acclimation on the incidence of two forms of freezing injury in protoplasts isolated from rye leaves.
    Uemura M; Steponkus PL
    Plant Physiol; 1989 Nov; 91(3):1131-7. PubMed ID: 16667123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of a kinetic model for intracellular ice formation based on the extent of supercooling.
    Pitt RE; Chandrasekaran M; Parks JE
    Cryobiology; 1992 Jun; 29(3):359-73. PubMed ID: 1499321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transformation of the cryobehavior of rye protoplasts by modification of the plasma membrane lipid composition.
    Steponkus PL; Uemura M; Balsamo RA; Arvinte T; Lynch DV
    Proc Natl Acad Sci U S A; 1988 Dec; 85(23):9026-30. PubMed ID: 16594000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lamellar-to-hexagonalII phase transitions in the plasma membrane of isolated protoplasts after freeze-induced dehydration.
    Gordon-Kamm WJ; Steponkus PL
    Proc Natl Acad Sci U S A; 1984 Oct; 81(20):6373-7. PubMed ID: 6593707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of water, sugars, and proteins on the pattern of ice nucleation and propagation in acclimated and nonacclimated canola leaves.
    Gusta LV; Wisniewski M; Nesbitt NT; Gusta ML
    Plant Physiol; 2004 Jul; 135(3):1642-53. PubMed ID: 15247390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microtubules in mesophyll cells of nonacclimated and cold-acclimated spinach : visualization and responses to freezing, low temperature, and dehydration.
    Bartolo ME; Carter JV
    Plant Physiol; 1991 Sep; 97(1):175-81. PubMed ID: 16668366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Comparison of Freezing Injury in Oat and Rye: Two Cereals at the Extremes of Freezing Tolerance.
    Webb MS; Uemura M; Steponkus PL
    Plant Physiol; 1994 Feb; 104(2):467-478. PubMed ID: 12232096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Behavior of the Plasma Membrane of Isolated Protoplasts during a Freeze-Thaw Cycle.
    Dowgert MF; Steponkus PL
    Plant Physiol; 1984 Aug; 75(4):1139-51. PubMed ID: 16663748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between Freezing Tolerance of Root-Tip Cells and Cold Stability of Microtubules in Rye (Secale cereale L. cv Puma).
    Kerr GP; Carter JV
    Plant Physiol; 1990 May; 93(1):77-82. PubMed ID: 16667470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cold Acclimation of Arabidopsis thaliana (Effect on Plasma Membrane Lipid Composition and Freeze-Induced Lesions).
    Uemura M; Joseph RA; Steponkus PL
    Plant Physiol; 1995 Sep; 109(1):15-30. PubMed ID: 12228580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cryopreservation of rye protoplasts by vitrification.
    Langis R; Steponkus PL
    Plant Physiol; 1990 Mar; 92(3):666-71. PubMed ID: 16667332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frost injury and heterogeneous ice nucleation in leaves of tuber-bearing solanum species : ice nucleation activity of external source of nucleants.
    Rajashekar CB; Li PH; Carter JV
    Plant Physiol; 1983 Apr; 71(4):749-55. PubMed ID: 16662901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunolocalization of Antifreeze Proteins in Winter Rye Leaves, Crowns, and Roots by Tissue Printing.
    Antikainen M; Griffith M; Zhang J; Hon WC; Yang D; Pihakaski-Maunsbach K
    Plant Physiol; 1996 Mar; 110(3):845-857. PubMed ID: 12226223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. To Acclimate or Not to Acclimate? Simultaneous Positive and Negative Effects of Acclimation on Susceptibility of Tribolium confusum (Coleoptera: Tenebrionidae) and Oryzaephilus surinamensis (Coleoptera: Silvanidae) to Low Temperatures.
    Athanassiou CG; Arthur FH; Kavallieratos NG; Hartzer KL
    J Econ Entomol; 2019 Sep; 112(5):2441-2449. PubMed ID: 31211829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is intracellular ice formation the cause of death of mouse sperm frozen at high cooling rates?
    Mazur P; Koshimoto C
    Biol Reprod; 2002 May; 66(5):1485-90. PubMed ID: 11967214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Mechanics of Injury to Isolated Protoplasts following Osmotic Contraction and Expansion.
    Dowgert MF; Wolfe J; Steponkus PL
    Plant Physiol; 1987 Apr; 83(4):1001-7. PubMed ID: 16665314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of Plasma Membrane Alterations in Cold Acclimation of Winter Rye Seedlings (Secale cereale L. cv Puma).
    Uemura M; Yoshida S
    Plant Physiol; 1984 Jul; 75(3):818-26. PubMed ID: 16663711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.