These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 1666322)

  • 1. Potential water-holding capacity and short-chain fatty acid production from purified fiber sources in a fecal incubation system.
    McBurney MI
    Nutrition; 1991; 7(6):421-4. PubMed ID: 1666322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of the amount of dietary fiber on the available energy from hindgut fermentation in growing pigs: use of cannulated pigs and in vitro fermentation.
    Anguita M; Canibe N; PĂ©rez JF; Jensen BB
    J Anim Sci; 2006 Oct; 84(10):2766-78. PubMed ID: 16971578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro batch fecal fermentation comparison of gas and short-chain fatty acid production using "slowly fermentable" dietary fibers.
    Kaur A; Rose DJ; Rumpagaporn P; Patterson JA; Hamaker BR
    J Food Sci; 2011; 76(5):H137-42. PubMed ID: 22417432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of ileal effluents, dietary fibers, and whole foods in predicting the physiological importance of colonic fermentation.
    McBurney MI; Thompson LU; Cuff DJ; Jenkins DJ
    Am J Gastroenterol; 1988 May; 83(5):536-40. PubMed ID: 2834944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of source and concentrations of dietary fiber on in vivo nitrogen excretion pathways in pigs as reflected by in vitro fermentation and nitrogen incorporation by fecal bacteria.
    Bindelle J; Buldgen A; Delacollette M; Wavreille J; Agneessens R; Destain JP; Leterme P
    J Anim Sci; 2009 Feb; 87(2):583-93. PubMed ID: 18791157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fermentation of dietary fibre by human colonic bacteria: disappearance of, short-chain fatty acid production from, and potential water-holding capacity of, various substrates.
    Bourquin LD; Titgemeyer EC; Fahey GC; Garleb KA
    Scand J Gastroenterol; 1993 Mar; 28(3):249-55. PubMed ID: 8383353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short-chain fatty acids produced in vitro from fibre residues obtained from mixed diets containing different breads and in human faeces during the ingestion of the diets.
    Wisker E; Daniel M; Rave G; Feldheim W
    Br J Nutr; 2000 Jul; 84(1):31-7. PubMed ID: 10961158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of different fibers for in vitro production of short chain fatty acids by intestinal microflora.
    Pylkas AM; Juneja LR; Slavin JL
    J Med Food; 2005; 8(1):113-6. PubMed ID: 15857221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fruit and vegetable fiber fermentation by gut microflora from canines.
    Swanson KS; Grieshop CM; Clapper GM; Shields RG; Belay T; Merchen NR; Fahey GC
    J Anim Sci; 2001 Apr; 79(4):919-26. PubMed ID: 11325198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vegetable fiber fermentation by human fecal bacteria: cell wall polysaccharide disappearance and short-chain fatty acid production during in vitro fermentation and water-holding capacity of unfermented residues.
    Bourquin LD; Titgemeyer EC; Fahey GC
    J Nutr; 1993 May; 123(5):860-9. PubMed ID: 8387579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative in vitro fermentation activity in the canine distal gastrointestinal tract and fermentation kinetics of fiber sources.
    Bosch G; Pellikaan WF; Rutten PG; van der Poel AF; Verstegen MW; Hendriks WH
    J Anim Sci; 2008 Nov; 86(11):2979-89. PubMed ID: 18599660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of yeast culture on in vitro fermentation of a high-concentrate or high-fiber diet using equine fecal inoculum in a Daisy II incubator.
    Lattimer JM; Cooper SR; Freeman DW; Lalman DL
    J Anim Sci; 2007 Oct; 85(10):2484-91. PubMed ID: 17526668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dietary fiber for dogs: IV. In vitro fermentation of selected fiber sources by dog fecal inoculum and in vivo digestion and metabolism of fiber-supplemented diets.
    Sunvold GD; Fahey GC; Merchen NR; Titgemeyer EC; Bourquin LD; Bauer LL; Reinhart GA
    J Anim Sci; 1995 Apr; 73(4):1099-109. PubMed ID: 7628954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro fermentation of cellulose, beet pulp, citrus pulp, and citrus pectin using fecal inoculum from cats, dogs, horses, humans, and pigs and ruminal fluid from cattle.
    Sunvold GD; Hussein HS; Fahey GC; Merchen NR; Reinhart GA
    J Anim Sci; 1995 Dec; 73(12):3639-48. PubMed ID: 8655439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical composition, in vitro fermentation characteristics, and in vivo digestibility responses by dogs to select corn fibers.
    Guevara MA; Bauer LL; Abbas CA; Beery KE; Holzgraefe DP; Cecava MJ; Fahey GC
    J Agric Food Chem; 2008 Mar; 56(5):1619-26. PubMed ID: 18275146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ileal effluent as a fermentation substrate: implications for butyrate production in the colon.
    Robertson JA; Ryden P; Botham L; Ring S
    J Environ Pathol Toxicol Oncol; 1999; 18(2):141-6. PubMed ID: 15281226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wheat dextrin, psyllium, and inulin produce distinct fermentation patterns, gas volumes, and short-chain fatty acid profiles in vitro.
    Timm DA; Stewart ML; Hospattankar A; Slavin JL
    J Med Food; 2010 Aug; 13(4):961-6. PubMed ID: 20482283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of three different fiber-supplemented enteral diets on bowel function and short-chain fatty acid production.
    Kapadia SA; Raimundo AH; Grimble GK; Aimer P; Silk DB
    JPEN J Parenter Enteral Nutr; 1995; 19(1):63-8. PubMed ID: 7658603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate degradation and postbiotic analysis of alternative fiber ingredients fermented using an in vitro canine fecal inoculum model.
    Holt DA; Corsato Alvarenga I; Donadelli RA; Aldrich CG
    J Anim Sci; 2023 Jan; 101():. PubMed ID: 36943140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro bile-acid binding and fermentation of high, medium, and low molecular weight beta-glucan.
    Kim HJ; White PJ
    J Agric Food Chem; 2010 Jan; 58(1):628-34. PubMed ID: 20020684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.