These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 16663330)

  • 81. Effect of changes in shoot carbon-exchange rate on soybean root nodule activity.
    Williams LE; Dejong TM; Phillips DA
    Plant Physiol; 1982 Feb; 69(2):432-6. PubMed ID: 16662224
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Nodule protein synthesis and nitrogenase activity of soybeans exposed to fixed nitrogen.
    Noel KD; Carneol M; Brill WJ
    Plant Physiol; 1982 Nov; 70(5):1236-41. PubMed ID: 16662660
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Nitrate Reduction by Roots of Soybean (Glycine max [L.] Merr.) Seedlings.
    Crafts-Brandner SJ; Harper JE
    Plant Physiol; 1982 Jun; 69(6):1298-303. PubMed ID: 16662390
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Nitrogen Fixation, Nodule Development, and Vegetative Regrowth of Alfalfa (Medicago sativa L.) following Harvest.
    Vance CP; Heichel GH; Barnes DK; Bryan JW; Johnson LE
    Plant Physiol; 1979 Jul; 64(1):1-8. PubMed ID: 16660893
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Immunochemical Characterization of Nitrate Reductase Forms from Wild-Type (cv Williams) and nr(1) Mutant Soybean.
    Robin P; Streit L; Campbell WH; Harper JE
    Plant Physiol; 1985 Jan; 77(1):232-6. PubMed ID: 16664016
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Accumulation of γ-aminobutyric acid in nodulated soybean in response to drought stress.
    Serraj R; Shelp BJ; Sinclair TR
    Physiol Plant; 1998 Jan; 102(1):79-86. PubMed ID: 35359126
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Nitrogen stress and the expression of asparagine synthetase in roots and nodules of soybean (Glycine max).
    Antunes F; Aguilar M; Pineda M; Sodek L
    Physiol Plant; 2008 Aug; 133(4):736-43. PubMed ID: 18384503
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Site of natural N enrichment of soybean nodules.
    Reinero A; Shearer G; Bryan BA; Skeeters JL; Kohl DH
    Plant Physiol; 1983 May; 72(1):256-8. PubMed ID: 16662971
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Variations in Ability of Rhizobium japonicum Strains To Nodulate Soybeans and Maintain Fixation in the Presence of Nitrate.
    McNeil DL
    Appl Environ Microbiol; 1982 Sep; 44(3):647-52. PubMed ID: 16346093
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Influence of Temperature on Nitrate Metabolism and Leaf Expansion in Soybean (Glycine max L. Merr.) Seedlings.
    Magalhães AC; Peters DB; Hageman RH
    Plant Physiol; 1976 Jul; 58(1):12-6. PubMed ID: 16659611
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Activities of the pentose phosphate pathway and enzymes of proline metabolism in legume root nodules.
    Kohl DH; Lin JJ; Shearer G; Schubert KR
    Plant Physiol; 1990 Nov; 94(3):1258-64. PubMed ID: 16667826
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Nitrate and nitrite reductase activities of
    Butala NS; Falkinham JO
    Int J Mycobacteriol; 2018; 7(4):328-331. PubMed ID: 30531029
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Diurnal changes in nitrogen assimilation of tobacco roots.
    Stöhr C; Mäck G
    J Exp Bot; 2001 Jun; 52(359):1283-9. PubMed ID: 11432947
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Nitrate reductase from bacteroides of Rhizobium japonicum: enzyme characteristics and possible interaction with nitrogen fixation.
    Kennedy IR; Rigaud J; Trinchant JC
    Biochim Biophys Acta; 1975 Jul; 397(1):24-35. PubMed ID: 1170894
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Relationship between Ureide N and N(2) Fixation, Aboveground N Accumulation, Acetylene Reduction, and Nodule Mass in Greenhouse and Field Studies with Glycine max L. (Merr).
    van Berkum P; Sloger C; Weber DF; Cregan PB; Keyser HH
    Plant Physiol; 1985 Jan; 77(1):53-8. PubMed ID: 16664027
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Genetic and biochemical studies of nitrate reduction in Aspergillus nidulans.
    Pateman JA; Rever BM; Cove DJ
    Biochem J; 1967 Jul; 104(1):103-11. PubMed ID: 4382427
    [TBL] [Abstract][Full Text] [Related]  

  • 97. NAD-Malic Enzyme Affects Nitrogen Fixing Activity of Bradyrhizobium japonicum USDA 110 Bacteroids in Soybean Nodules.
    Dao TV; Nomura M; Hamaguchi R; Kato K; Itakura M; Minamisawa K; Sinsuwongwat S; Le HT; Kaneko T; Tabata S; Tajima S
    Microbes Environ; 2008; 23(3):215-20. PubMed ID: 21558711
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Nitrate and Carbohydrate Effects on Nodulation and Nitrogen Fixation (Acetylene Reduction) Activity of Lentil (Lens esculenta Moench).
    Wong PP
    Plant Physiol; 1980 Jul; 66(1):78-81. PubMed ID: 16661398
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Nucleoside diphosphatase and 5'-nucleotidase activities of soybean root nodules and other tissues.
    Doremus HD; Blevins DG
    Plant Physiol; 1988 May; 87(1):36-40. PubMed ID: 16666122
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Effects of Pod Removal on Metabolism and Senescence of Nodulating and Nonnodulating Soybean Isolines: II. Enzymes and Chlorophyll.
    Crafts-Brandner SJ; Below FE; Harper JE; Hageman RH
    Plant Physiol; 1984 Jun; 75(2):318-22. PubMed ID: 16663618
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.