These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 16663358)

  • 1. Isolation-Inflicted Injury to Mitochondria from Fresh Pollen Gradually Overcome by an Active Strengthening during Germination.
    Hoekstra FA; van Roekel T
    Plant Physiol; 1983 Dec; 73(4):995-1001. PubMed ID: 16663358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imbibitional chilling injury in pollen: involvement of the respiratory chain.
    Hoekstra FA
    Plant Physiol; 1984 Apr; 74(4):815-21. PubMed ID: 16663516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural correlates of imbibitional injury in Typha pollen.
    Sack FD; Leopold AC; Hoekstra FA
    Am J Bot; 1988; 75(4):570-8. PubMed ID: 11537890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial development and activity of binucleate and trinucleate pollen during germination in vitro.
    Hoekstra FA
    Planta; 1979 Jan; 145(1):25-36. PubMed ID: 24317561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural Development during Germination of Different Populations of Mitochondria from Pea Cotyledons.
    Malhotra SS; Spencer M
    Plant Physiol; 1973 Dec; 52(6):575-9. PubMed ID: 16658608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane phase transitions are responsible for imbibitional damage in dry pollen.
    Crowe JH; Hoekstra FA; Crowe LM
    Proc Natl Acad Sci U S A; 1989 Jan; 86(2):520-3. PubMed ID: 16594011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast pollen tube growth in Conospermum species.
    Stone LM; Seaton KA; Kuo J; McComb JA
    Ann Bot; 2004 Apr; 93(4):369-78. PubMed ID: 14980970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial biogenesis during fungal spore germination: effects of the antilipogenic antibiotic cerulenin upon Botryodiplodia spores.
    Brambl R; Wenzler H; Josephson M
    J Bacteriol; 1978 Aug; 135(2):311-7. PubMed ID: 681274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Downregulation of a Mitochondrial NAD+ Transporter (NDT2) Alters Seed Production and Germination in Arabidopsis.
    Feitosa-Araujo E; de Souza Chaves I; Florian A; da Fonseca-Pereira P; Condori Apfata JA; Heyneke E; Medeiros DB; Pires MV; Mettler-Altmann T; Neuhaus HE; Palmieri F; Araï Jo WL; Obata T; Weber APM; Linka N; Fernie AR; Nunes-Nesi A
    Plant Cell Physiol; 2020 May; 61(5):897-908. PubMed ID: 32065636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viability and germination of the pollen of sorghum [Sorghum bicolor (L.) Moench].
    Lansac AR; Sullivan CY; Johnson BE; Lee KW
    Ann Bot; 1994 Jul; 74(1):27-33. PubMed ID: 19700459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial biogenesis during germination in maize embryos.
    Logan DC; Millar AH; Sweetlove LJ; Hill SA; Leaver CJ
    Plant Physiol; 2001 Feb; 125(2):662-72. PubMed ID: 11161024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactive oxygen species are involved in regulation of pollen wall cytomechanics.
    Smirnova AV; Matveyeva NP; Yermakov IP
    Plant Biol (Stuttg); 2014 Jan; 16(1):252-7. PubMed ID: 23574420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A crystalline lipid phase in a dry biological system: evidence from X-ray diffraction analysis of Typha latifolia pollen.
    Caffrey M; Werner BG; Priestley DA
    Biochim Biophys Acta; 1987 Sep; 921(1):124-34. PubMed ID: 3620484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation of Physiologically Active and Intact Mitochondria from Chickpea.
    Pandey S; Kumari A; Gupta KJ
    Methods Mol Biol; 2017; 1670():77-85. PubMed ID: 28871537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymmetric Hybridization in Cattails (Typha spp.) and Its Implications for the Evolutionary Maintenance of Native Typha latifolia.
    Pieper SJ; Nicholls AA; Freeland JR; Dorken ME
    J Hered; 2017 Jul; 108(5):479-487. PubMed ID: 28430996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in the mitochondrial proteome of developing maize seed embryos.
    Wang WQ; Wang Y; Zhang Q; Møller IM; Song SQ
    Physiol Plant; 2018 Aug; 163(4):552-572. PubMed ID: 29575040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pollenkitt of some monocotyledons: lipid composition and implications for pollen germination.
    Chichiriccò G; Pacini E; Lanza B
    Plant Biol (Stuttg); 2019 Sep; 21(5):920-926. PubMed ID: 31034724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrastructure and germination of Vitis vinifera cv. Loureiro pollen.
    Abreu I; Costa I; Oliveira M; Cunha M; de Castro R
    Protoplasma; 2006 Aug; 228(1-3):131-5. PubMed ID: 16937066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene expression profiles of cold-stored and fresh pollen to investigate pollen germination and growth.
    Wang ML; Hsu CM; Chang LC; Wang CS; Su TH; Huang YJ; Jiang L; Jauh GY
    Plant Cell Physiol; 2004 Oct; 45(10):1519-28. PubMed ID: 15564535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Arabidopsis KINβγ Subunit of the SnRK1 Complex Regulates Pollen Hydration on the Stigma by Mediating the Level of Reactive Oxygen Species in Pollen.
    Gao XQ; Liu CZ; Li DD; Zhao TT; Li F; Jia XN; Zhao XY; Zhang XS
    PLoS Genet; 2016 Jul; 12(7):e1006228. PubMed ID: 27472382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.