These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 16663403)

  • 21. Loss of pod set caused by drought stress is associated with water status and ABA content of reproductive structures in soybean.
    Liu F; Andersen MN; Jensen CR
    Funct Plant Biol; 2003 Mar; 30(3):271-280. PubMed ID: 32689009
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Drought effect on growth, gas exchange and yield, in two strains of local barley Ardhaoui, under water deficit conditions in southern Tunisia.
    Thameur A; Lachiheb B; Ferchichi A
    J Environ Manage; 2012 Dec; 113():495-500. PubMed ID: 22766042
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Elevated ozone concentration decreases whole-plant hydraulic conductance and disturbs water use regulation in soybean plants.
    Zhang WW; Wang M; Wang AY; Yin XH; Feng ZZ; Hao GY
    Physiol Plant; 2018 Jun; 163(2):183-195. PubMed ID: 29193125
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interaction of water supply and N in wheat.
    Morgan JA
    Plant Physiol; 1984 Sep; 76(1):112-7. PubMed ID: 16663780
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydraulic and chemical signals in the control of leaf expansion and stomatal conductance in soybean exposed to drought stress.
    Liu F; Jensen CR; Andersen MN
    Funct Plant Biol; 2003 Feb; 30(1):65-73. PubMed ID: 32688993
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of Water Stress on Photosynthesis and Carbon Partitioning in Soybean (Glycine max [L.] Merr.) Plants Grown in the Field at Different CO(2) Levels.
    Huber SC; Rogers HH; Mowry FL
    Plant Physiol; 1984 Sep; 76(1):244-9. PubMed ID: 16663807
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stomatal closure of Pelargonium × hortorum in response to soil water deficit is associated with decreased leaf water potential only under rapid soil drying.
    Boyle RK; McAinsh M; Dodd IC
    Physiol Plant; 2016 Jan; 156(1):84-96. PubMed ID: 25974219
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Root restriction as a factor in photosynthetic acclimation of cotton seedlings grown in elevated carbon dioxide.
    Thomas RB; Strain BR
    Plant Physiol; 1991 Jun; 96(2):627-34. PubMed ID: 16668232
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Response of respiration of soybean leaves grown at ambient and elevated carbon dioxide concentrations to day-to-day variation in light and temperature under field conditions.
    Bunce JA
    Ann Bot; 2005 May; 95(6):1059-66. PubMed ID: 15781437
    [TBL] [Abstract][Full Text] [Related]  

  • 30. How will climate change influence grapevine cv. Tempranillo photosynthesis under different soil textures?
    Leibar U; Aizpurua A; Unamunzaga O; Pascual I; Morales F
    Photosynth Res; 2015 May; 124(2):199-215. PubMed ID: 25786733
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tomato plant-water uptake and plant-water relationships under saline growth conditions.
    Romero-Aranda R; Soria T; Cuartero J
    Plant Sci; 2001 Jan; 160(2):265-272. PubMed ID: 11164598
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Partial root zone drying: regulation of photosynthetic limitations and antioxidant enzymatic activities in young olive (Olea europaea) saplings.
    Aganchich B; Wahbi S; Loreto F; Centritto M
    Tree Physiol; 2009 May; 29(5):685-96. PubMed ID: 19324696
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of drought and changes in vapour pressure deficit on water relations of Populus deltoides growing in ambient and elevated CO2.
    Bobich EG; Barron-Gafford GA; Rascher KG; Murthy R
    Tree Physiol; 2010 Jul; 30(7):866-75. PubMed ID: 20462939
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Leaf mechanisms for drought resistance in Zizyphus jujuba trees.
    Cruz ZN; Rodríguez P; Galindo A; Torrecillas E; Ondoño S; Mellisho CD; Torrecillas A
    Plant Sci; 2012 Dec; 197():77-83. PubMed ID: 23116674
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of CO
    Tolley LC; Strain BR
    Oecologia; 1985 Jan; 65(2):166-172. PubMed ID: 28310662
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Eco-physiological investigations on wild and cultivated plants in the Negev Desert : II. The influence of climatic factors on carbon dioxide exchange and transpiration at the end of the dry period].
    Schulze E-; Lange OL; Koch W
    Oecologia; 1972 Dec; 8(4):334-355. PubMed ID: 28311256
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Carbon dioxide enrichment improves growth, water relations and survival of droughted honey mesquite (Prosopis glandulosa) seedlings.
    Polley HW; Johnson HB; Mayeux HS; Tischler CR; Brown DA
    Tree Physiol; 1996 Oct; 16(10):817-23. PubMed ID: 14871671
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Elevated atmospheric carbon dioxide effects on soybean and sorghum gas exchange in conventional and no-tillage systems.
    Prior SA; Runion GB; Rogers HH; Arriaga FJ
    J Environ Qual; 2010; 39(2):596-608. PubMed ID: 20176833
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Growth under elevated atmospheric CO(2) concentration accelerates leaf senescence in sunflower (Helianthus annuus L.) plants.
    de la Mata L; Cabello P; de la Haba P; Agüera E
    J Plant Physiol; 2012 Sep; 169(14):1392-400. PubMed ID: 22818664
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Water Potential and Stomatal Resistance of Sunflower and Soybean Subjected to Water Stress during Various Growth Stages.
    Sionit N; Kramer PJ
    Plant Physiol; 1976 Oct; 58(4):537-40. PubMed ID: 16659712
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.