BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 16663485)

  • 1. Effects of Glycolate Pathway Intermediates on Glycine Decarboxylation and Serine Synthesis in Pea (Pisum sativum L.).
    Shingles R; Woodrow L; Grodzinski B
    Plant Physiol; 1984 Mar; 74(3):705-10. PubMed ID: 16663485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of Glycine Decarboxylase and l-Serine Hydroxymethyltransferase Activities by Glyoxylate in Tobacco Leaf Mitochondrial Preparations.
    Peterson RB
    Plant Physiol; 1982 Jul; 70(1):61-6. PubMed ID: 16662480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Study of Formate Production and Oxidation in Leaf Peroxisomes during Photorespiration.
    Grodzinski B
    Plant Physiol; 1979 Feb; 63(2):289-93. PubMed ID: 16660715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of decarboxylation of glycine and glycolate by isolated soybean cells.
    Oliver DJ
    Plant Physiol; 1979 Dec; 64(6):1048-52. PubMed ID: 16661090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of glycine decarboxylation and serine formation in tobacco by glycine hydroxamate and its effect on photorespiratory carbon flow.
    Lawyer AL; Zelitch I
    Plant Physiol; 1979 Nov; 64(5):706-11. PubMed ID: 16661039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycolate and glyoxylate metabolism by isolated peroxisomes or chloroplasts.
    Kisaki T; Tolbert NE
    Plant Physiol; 1969 Feb; 44(2):242-50. PubMed ID: 16657053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fixation of O(2) during Photorespiration: Kinetic and Steady-State Studies of the Photorespiratory Carbon Oxidation Cycle with Intact Leaves and Isolated Chloroplasts of C(3) Plants.
    Berry JA; Osmond CB; Lorimer GH
    Plant Physiol; 1978 Dec; 62(6):954-67. PubMed ID: 16660647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extraction and partial characterization of the glycine decarboxylase multienzyme complex from pea leaf mitochondria.
    Sarojini G; Oliver DJ
    Plant Physiol; 1983 May; 72(1):194-9. PubMed ID: 16662959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tracing Metabolic Fate of Mitochondrial Glycine Cleavage System Derived Formate In Vitro and In Vivo.
    Tan YL; Sou NL; Tang FY; Ko HA; Yeh WT; Peng JH; Chiang EI
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33233834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of Glyoxylate Decarboxylation in the Glycolate Pathway in Euglena gracilis Z : Participation of Mn-Dependent NADPH Oxidase in Chloroplasts.
    Yokota A; Kawabata A; Kitaoka S
    Plant Physiol; 1983 Apr; 71(4):772-6. PubMed ID: 16662905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the effectiveness of glycolic Acid and glycine as substrates for photorespiration.
    Zelitch I
    Plant Physiol; 1972 Jul; 50(1):109-13. PubMed ID: 16658103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glyoxylate decarboxylation during photorespiration.
    Grodzinski B
    Planta; 1978 Jan; 144(1):31-7. PubMed ID: 24408641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of [N]glutamate from [N]h(4) and [N]glycine by mitochondria isolated from pea and corn shoots.
    Yamaya T; Oaks A; Rhodes D; Matsumoto H
    Plant Physiol; 1986 Jul; 81(3):754-7. PubMed ID: 16664897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymes of serine and glycine metabolism in leaves and non-photosynthetic tissues of Pisum sativum L.
    Walton NJ; Woolhouse HW
    Planta; 1986 Jan; 167(1):119-28. PubMed ID: 24241741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and Characterization of Glycolate Oxidase and Related Enzymes from the Endocyanotic Alga Cyanophora paradoxa and from Pea Leaves.
    Betsche T; Schaller D; Melkonian M
    Plant Physiol; 1992 Mar; 98(3):887-93. PubMed ID: 16668760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycolate pathway in green algae.
    Bruin WJ; Nelson EB; Tolbert NE
    Plant Physiol; 1970 Sep; 46(3):386-91. PubMed ID: 16657472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Different metabolic fate of two carbons of glycolate in its conversion to serine in Euglena gracilis z.
    Yokota A; Komura H; Kitaoka S
    Arch Biochem Biophys; 1985 Nov; 242(2):498-506. PubMed ID: 3933424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolism of Glycolate in Isolated Spinach Leaf Peroxisomes : KINETICS OF GLYOXYLATE, OXALATE, CARBON DIOXIDE, AND GLYCINE FORMATION.
    Chang CC; Huang AH
    Plant Physiol; 1981 May; 67(5):1003-6. PubMed ID: 16661772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of glycine decarboxylase in pea leaf mitochondria by ATP.
    Zhang Q; Wiskich JT
    Arch Biochem Biophys; 1995 Jul; 320(2):250-6. PubMed ID: 7625831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of glycine hydroxamate, carbon dioxide, and oxygen on photorespiratory carbon and nitrogen metabolism in spinach mesophyll cells.
    Lawyer AL; Cornwell KL; Gee SL; Bassham JA
    Plant Physiol; 1982 May; 69(5):1136-9. PubMed ID: 16662358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.