These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 16663505)

  • 41. Recombinant phytochrome of the moss Ceratodon purpureus: heterologous expression and kinetic analysis of Pr-->Pfr conversion.
    Zeidler M; Lamparter T; Hughes J; Hartmann E; Remberg A; Braslavsky S; Schaffner K; Gärtner W
    Photochem Photobiol; 1998 Dec; 68(6):857-63. PubMed ID: 9867036
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Photoreversible change in the conformation of phytochrome as probed with a covalently bound fluorescent sulfhydryl reagent, N-(9-acridinyl)maleimide.
    Yamamoto KT
    Biochim Biophys Acta; 1993 Jun; 1163(3):227-33. PubMed ID: 8507660
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Interactions between native oat phytochrome and tetrapyrroles.
    Singh BR; Song PS
    Biochim Biophys Acta; 1989 Jun; 996(1-2):62-9. PubMed ID: 2736260
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mechanism of native oat phytochrome photoreversion: a time-resolved absorption investigation.
    Chen E; Lapko VN; Lewis JW; Song PS; Kliger DS
    Biochemistry; 1996 Jan; 35(3):843-50. PubMed ID: 8547264
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A differential molecualr topography of the Pr and Pfr forms of native oat phytochrome as probed by fluoresence quenching.
    Singh BR; Song PS
    Planta; 1990 May; 181(2):263-7. PubMed ID: 24196747
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sequences within both the N- and C-terminal domains of phytochrome A are required for PFR ubiquitination and degradation.
    Clough RC; Jordan-Beebe ET; Lohman KN; Marita JM; Walker JM; Gatz C; Vierstra RD
    Plant J; 1999 Jan; 17(2):155-67. PubMed ID: 10074713
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Discrimination between the red- and far-red-absorbing forms of phytochrome from Avena sativa L. by monoclonal antibodies.
    Thomas B; Penn SE; Butcher GW; Galfre G
    Planta; 1984 Mar; 160(4):382-4. PubMed ID: 24258587
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Purification and spectroscopic properties of 124-kDa oat phytochrome.
    Chai YG; Singh BR; Song PS; Lee J; Robinson GW
    Anal Biochem; 1987 Jun; 163(2):322-30. PubMed ID: 3661984
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Identification of surface-exposed parts of red-light- and far-red-light-absorbing forms of native pea phytochrome by limited proteolysis.
    Nakazawa M; Hayashi H; Yoshida Y; Manabe K
    Plant Cell Physiol; 1993 Jan; 34(1):83-91. PubMed ID: 8025822
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Surface topography of phytochrome A deduced from specific chemical modification with iodoacetamide.
    Lapko VN; Jiang XY; Smith DL; Song PS
    Biochemistry; 1998 Sep; 37(36):12526-35. PubMed ID: 9730825
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The photoreactions of recombinant phytochrome from the cyanobacterium Synechocystis: a low-temperature UV-Vis and FT-IR spectroscopic study.
    Foerstendorf H; Lamparter T; Hughes J; Gärtner W; Siebert F
    Photochem Photobiol; 2000 May; 71(5):655-61. PubMed ID: 10818798
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Large-scale generation of affinity-purified recombinant phytochrome chromopeptide.
    Mozley D; Remberg A; Gärtner W
    Photochem Photobiol; 1997 Nov; 66(5):710-5. PubMed ID: 9383995
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Heterologous expression and characterization of recombinant phytochrome from the green alga Mougeotia scalaris.
    Jorissen HJ; Braslavsky SE; Wagner G; Gärtner W
    Photochem Photobiol; 2002 Oct; 76(4):457-61. PubMed ID: 12405156
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Red light-induced structure changes in phytochrome A from Pisum sativum.
    Oide M; Nakasako M
    Sci Rep; 2021 Feb; 11(1):2827. PubMed ID: 33531580
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Spectral characteristics of phytochrome in vivo and in vitro.
    Kendrick RE; Roth-Bejerano N
    Planta; 1978 Jan; 142(2):225-8. PubMed ID: 24408107
    [TBL] [Abstract][Full Text] [Related]  

  • 56. N-terminal domain of Avena phytochrome: interactions with sodium dodecyl sulfate micelles and N-terminal chain truncated phytochrome.
    Parker W; Partis M; Song PS
    Biochemistry; 1992 Oct; 31(39):9413-20. PubMed ID: 1390724
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of the Destruction of Phytochrome in the Red-absorbing Form.
    Stone HJ; Pratt LH
    Plant Physiol; 1979 Apr; 63(4):680-2. PubMed ID: 16660790
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hydrophobic properties of phytochrome as probed by 8-anilinonaphthalene-1-sulfonate fluorescence.
    Hahn TR; Song PS
    Biochemistry; 1981 Apr; 20(9):2602-9. PubMed ID: 7236624
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Resonance Raman analysis of the Pr and Pfr forms of phytochrome.
    Fodor SP; Lagarias JC; Mathies RA
    Biochemistry; 1990 Dec; 29(50):11141-6. PubMed ID: 2271702
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Binding of phytochrome to liposomes and protoplasts.
    Kim IS; Song PS
    Biochemistry; 1981 Sep; 20(19):5482-9. PubMed ID: 7295687
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.