These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 16663574)

  • 1. Fermentative Metabolism of Chlamydomonas reinhardtii: I. Analysis of Fermentative Products from Starch in Dark and Light.
    Gfeller RP; Gibbs M
    Plant Physiol; 1984 May; 75(1):212-8. PubMed ID: 16663574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. H(2) and CO(2) Evolution by Anaerobically Adapted Chlamydomonas reinhardtii F-60.
    Bamberger ES; King D; Erbes DL; Gibbs M
    Plant Physiol; 1982 Jun; 69(6):1268-73. PubMed ID: 16662384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altered fermentative metabolism in Chlamydomonas reinhardtii mutants lacking pyruvate formate lyase and both pyruvate formate lyase and alcohol dehydrogenase.
    Catalanotti C; Dubini A; Subramanian V; Yang W; Magneschi L; Mus F; Seibert M; Posewitz MC; Grossman AR
    Plant Cell; 2012 Feb; 24(2):692-707. PubMed ID: 22353371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fermentative Metabolism of Chlamydomonas reinhardii: III. Photoassimilation of Acetate.
    Gibbs M; Gfeller RP; Chen C
    Plant Physiol; 1986 Sep; 82(1):160-6. PubMed ID: 16664985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen evolution as a consumption mode of reducing equivalents in green algal fermentation.
    Ohta S; Miyamoto K; Miura Y
    Plant Physiol; 1987 Apr; 83(4):1022-6. PubMed ID: 16665317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fermentative Metabolism of Hydrogen-evolving Chlamydomonas moewusii.
    Klein U; Betz A
    Plant Physiol; 1978 Jun; 61(6):953-6. PubMed ID: 16660433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen production in Chlamydomonas: photosystem II-dependent and -independent pathways differ in their requirement for starch metabolism.
    Chochois V; Dauvillée D; Beyly A; Tolleter D; Cuiné S; Timpano H; Ball S; Cournac L; Peltier G
    Plant Physiol; 2009 Oct; 151(2):631-40. PubMed ID: 19700559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy Supply and Light-enhanced Chloride Uptake in Wheat Laminae.
    Macdonald IR; Macklon AE; Macleod RW
    Plant Physiol; 1975 Nov; 56(5):699-702. PubMed ID: 16659375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The exceptional photofermentative hydrogen metabolism of the green alga Chlamydomonas reinhardtii.
    Hemschemeier A; Happe T
    Biochem Soc Trans; 2005 Feb; 33(Pt 1):39-41. PubMed ID: 15667259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A pyruvate formate lyase-deficient Chlamydomonas reinhardtii strain provides evidence for a link between fermentation and hydrogen production in green algae.
    Philipps G; Krawietz D; Hemschemeier A; Happe T
    Plant J; 2011 Apr; 66(2):330-40. PubMed ID: 21219510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of extracellular pH on the metabolic pathways in sulfur-deprived, H2-producing Chlamydomonas reinhardtii cultures.
    Kosourov S; Seibert M; Ghirardi ML
    Plant Cell Physiol; 2003 Feb; 44(2):146-55. PubMed ID: 12610217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial microRNA-mediated knockdown of pyruvate formate lyase (PFL1) provides evidence for an active 3-hydroxybutyrate production pathway in the green alga Chlamydomonas reinhardtii.
    Burgess SJ; Tredwell G; Molnàr A; Bundy JG; Nixon PJ
    J Biotechnol; 2012 Nov; 162(1):57-66. PubMed ID: 22687249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of the Photosystem II Inhibitors CCCP and DCMU on Hydrogen Production by the Unicellular Halotolerant Cyanobacterium
    Pansook S; Incharoensakdi A; Phunpruch S
    ScientificWorldJournal; 2019; 2019():1030236. PubMed ID: 31346323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anaerobic Formation of d-Lactate and Partial Purification and Characterization of a Pyruvate Reductase from Chlamydomonas reinhardtii.
    Husic DW; Tolbert NE
    Plant Physiol; 1985 Jun; 78(2):277-84. PubMed ID: 16664230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of a gene for a light-harvesting chlorophyll a/b-binding protein in Chlamydomonas reinhardtii: effect of light and acetate.
    Kindle KL
    Plant Mol Biol; 1987 Nov; 9(6):547-63. PubMed ID: 24277192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fermentation and Sulfur Reduction in the Mat-Building Cyanobacterium Microcoleus chthonoplastes.
    Moezelaar R; Bijvank SM; Stal LJ
    Appl Environ Microbiol; 1996 May; 62(5):1752-8. PubMed ID: 16535319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Mechanism of Hydrogen Evolution by Chlamydomonas moewusii.
    Healey FP
    Plant Physiol; 1970 Feb; 45(2):153-9. PubMed ID: 16657294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic modelling and simulation of the light and dark metabolism of Chlamydomonas reinhardtii.
    Shene C; Asenjo JA; Chisti Y
    Plant J; 2018 Dec; 96(5):1076-1088. PubMed ID: 30168220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acetate in mixotrophic growth medium affects photosystem II in Chlamydomonas reinhardtii and protects against photoinhibition.
    Roach T; Sedoud A; Krieger-Liszkay A
    Biochim Biophys Acta; 2013 Oct; 1827(10):1183-90. PubMed ID: 23791666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concerted Up-regulation of Aldehyde/Alcohol Dehydrogenase (ADHE) and Starch in
    van Lis R; Popek M; Couté Y; Kosta A; Drapier D; Nitschke W; Atteia A
    J Biol Chem; 2017 Feb; 292(6):2395-2410. PubMed ID: 28007962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.