These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 16663618)

  • 1. Effects of Pod Removal on Metabolism and Senescence of Nodulating and Nonnodulating Soybean Isolines: II. Enzymes and Chlorophyll.
    Crafts-Brandner SJ; Below FE; Harper JE; Hageman RH
    Plant Physiol; 1984 Jun; 75(2):318-22. PubMed ID: 16663618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of pod removal on metabolism and senescence of nodulating and nonnodulating soybean isolines: I. Metabolic constituents.
    Crafts-Brandner SJ; Below FE; Harper JE; Hageman RH
    Plant Physiol; 1984 Jun; 75(2):311-7. PubMed ID: 16663617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of nodulation on assimilate remobilization in soybean.
    Crafts-Brandner SJ; Below FE; Harper JE; Hageman RH
    Plant Physiol; 1984 Oct; 76(2):452-5. PubMed ID: 16663863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leaf Nitrate Reductase, d-Ribulose-1,5-bisphosphate Carboxylase, and Root Nodule Development of Genetic Male-Sterile and Fertile Soybean Isolines.
    Schweitzer LE; Harper JE
    Plant Physiol; 1985 May; 78(1):61-5. PubMed ID: 16664209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drought Stress and Elevated CO(2) Effects on Soybean Ribulose Bisphosphate Carboxylase Activity and Canopy Photosynthetic Rates.
    Vu JC; Allen LH; Bowes G
    Plant Physiol; 1987 Mar; 83(3):573-8. PubMed ID: 16665291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of pod removal on leaf senescence in soybeans.
    Wittenbach VA
    Plant Physiol; 1982 Nov; 70(5):1544-8. PubMed ID: 16662714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of pod removal on leaf photosynthesis and soluble protein composition of field-grown soybeans.
    Wittenbach VA
    Plant Physiol; 1983 Sep; 73(1):121-4. PubMed ID: 16663159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Sink Removal on Photosynthesis and Senescence in Leaves of Soybean (Glycine max L.) Plants.
    Mondal MH; Brun WA; Brenner ML
    Plant Physiol; 1978 Mar; 61(3):394-7. PubMed ID: 16660300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Light and Elevated Atmospheric CO(2) on the Ribulose Bisphosphate Carboxylase Activity and Ribulose Bisphosphate Level of Soybean Leaves.
    Vu CV; Allen LH; Bowes G
    Plant Physiol; 1983 Nov; 73(3):729-34. PubMed ID: 16663291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ribulose Bisphosphate Carboxylase and Proteolytic Activity in Wheat Leaves from Anthesis through Senescence.
    Wittenbach VA
    Plant Physiol; 1979 Nov; 64(5):884-7. PubMed ID: 16661075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Weather and nodule mediated variations in delta 13C and delta 15N values in field-grown soybean (Glycine max L.) with special interest in the analyses of xylem fluids.
    Yoneyama T; Fujiwara H; Engelaar WM
    J Exp Bot; 2000 Mar; 51(344):559-66. PubMed ID: 10938812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photosynthetic Acclimation in Pea and Soybean to High Atmospheric CO2 Partial Pressure.
    Xu DQ; Gifford RM; Chow WS
    Plant Physiol; 1994 Oct; 106(2):661-671. PubMed ID: 12232358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photosynthesis, leaf resistances, and ribulose-1,5-bisphosphate carboxylase degradation in senescing barley leaves.
    Friedrich JW; Huffaker RC
    Plant Physiol; 1980 Jun; 65(6):1103-7. PubMed ID: 16661340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in photosynthetic behaviour and leaf senescence of soybean (Glycine max [L.] Merrill) dependent on N2 fixation or nitrate supply.
    Kaschuk G; Hungria M; Leffelaar PA; Giller KE; Kuyper TW
    Plant Biol (Stuttg); 2010 Jan; 12(1):60-9. PubMed ID: 20653888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox markers for drought-induced nodule senescence, a process occurring after drought-induced senescence of the lowest leaves in soybean (Glycine max).
    Marquez-Garcia B; Shaw D; Cooper JW; Karpinska B; Quain MD; Makgopa EM; Kunert K; Foyer CH
    Ann Bot; 2015 Sep; 116(4):497-510. PubMed ID: 25851140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrogen metabolism of soybeans: I. Effect of tungstate on nitrate utilization, nodulation, and growth.
    Harper JE; Nicholas JC
    Plant Physiol; 1978 Oct; 62(4):662-4. PubMed ID: 16660578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorus nutrition influence on leaf senescence in soybean.
    Crafts-Brandner SJ
    Plant Physiol; 1992 Mar; 98(3):1128-32. PubMed ID: 16668736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nodule activity and allocation of photosynthate of soybean during recovery from water stress.
    Fellows RJ; Patterson RP; Raper CD; Harris D
    Plant Physiol; 1987 May; 84(1):456-60. PubMed ID: 11539766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of nitrate in the rooting medium on carbohydrate composition of soybean nodules.
    Streeter JG
    Plant Physiol; 1981 Oct; 68(4):840-4. PubMed ID: 16662009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlations among leaf CO2-exchange rates, areas and enzyme activities among soybean cultivars.
    Hesketh JD; Ogren WL; Hageman ME; Peters DB
    Photosynth Res; 1981 Mar; 2(1):21-30. PubMed ID: 24470153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.