These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 16663723)

  • 1. Factors permitting prolonged translation by isolated pea chloroplasts.
    Nivison HT; Jagendorf AT
    Plant Physiol; 1984 Aug; 75(4):1001-8. PubMed ID: 16663723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal conditions for translation by thylakoid-bound polysomes from pea chloroplasts.
    Bhaya D; Jagendorf AT
    Plant Physiol; 1984 Jul; 75(3):832-8. PubMed ID: 16663713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High rates of protein synthesis by isolated chloroplasts.
    Fish LE; Jagendorf AT
    Plant Physiol; 1982 Oct; 70(4):1107-14. PubMed ID: 16662622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Further characterization of ribosome binding to thylakoid membranes.
    Hurewitz J; Jagendorf AT
    Plant Physiol; 1987 May; 84(1):31-4. PubMed ID: 16665400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of thylakoid membrane proteins by chloroplasts isolated from spinach. Cytochrome b559 and P700-chlorophyll a-protein.
    Zielinski RE; Price CA
    J Cell Biol; 1980 May; 85(2):435-45. PubMed ID: 7372715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimulation of carbon dioxide fixation in isolated pea chloroplasts by catalytic amounts of adenine nucleotides.
    Robinson SP; Wiskich JT
    Plant Physiol; 1976 Aug; 58(2):156-62. PubMed ID: 16659638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Permeability of chloroplast envelopes to mg: effects on protein synthesis.
    Deshaies RJ; Fish LE; Jagendorf AT
    Plant Physiol; 1984 Apr; 74(4):956-61. PubMed ID: 16663541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lack of ATP requirement for light stimulation of glycerate transport into intact isolated chloroplasts.
    Robinson SP
    Plant Physiol; 1984 Jun; 75(2):425-30. PubMed ID: 16663638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of protein synthesis in isolated higher plant chloroplasts. Identification of paused translation intermediates.
    Mullet JE; Klein RR; Grossman AR
    Eur J Biochem; 1986 Mar; 155(2):331-8. PubMed ID: 3956489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein synthesis in chloroplasts. Characteristics and products of protein synthesis in vitro in etioplasts and developing chloroplasts from pea leaves.
    Siddell SG; Ellis RJ
    Biochem J; 1975 Mar; 146(3):675-85. PubMed ID: 1147911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amino Acid Biosynthesis by Isolated Chloroplasts during Photosynthesis.
    Kirk PR; Leech RM
    Plant Physiol; 1972 Aug; 50(2):228-34. PubMed ID: 16658147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reductive pentose phosphate cycle and oxidative carbohydrate metabolic activities in pea chloroplast stroma extracts.
    Furbank RT; Lilley RM
    Plant Physiol; 1981 May; 67(5):1036-41. PubMed ID: 16661778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein methylation in pea chloroplasts.
    Niemi KJ; Adler J; Selman BR
    Plant Physiol; 1990 Jul; 93(3):1235-40. PubMed ID: 16667584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concentrations of long-chain acyl-acyl carrier proteins during fatty acid synthesis by chloroplasts isolated from pea (Pisum sativum), safflower (Carthamus tinctoris), and amaranthus (Amaranthus lividus) leaves.
    Roughan G; Nishida I
    Arch Biochem Biophys; 1990 Jan; 276(1):38-46. PubMed ID: 2297229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthesis of Sulfoquinovosyldiacylglycerol in Higher Plants: The Incorporation of SO(4) by Intact Chloroplasts in Darkness.
    Kleppinger-Sparace KF; Mudd JB
    Plant Physiol; 1987 Jul; 84(3):682-7. PubMed ID: 16665502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chloroplast phosphoproteins. Phosphorylation of polypeptides of the light-harvesting chlorophyll protein complex.
    Bennett J
    Eur J Biochem; 1979 Aug; 99(1):133-7. PubMed ID: 488114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Betaine aldehyde oxidation by spinach chloroplasts.
    Weigel P; Weretilnyk EA; Hanson AD
    Plant Physiol; 1986 Nov; 82(3):753-9. PubMed ID: 16665106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific Labeling of the Phosphate Translocator in C(3) and C(4) Mesophyll Chloroplasts by Tritiated Dihydro-DIDS (1,2-Ditritio-1,2-[2,2' -Disulfo-4,4' -Diisothiocyano] Diphenylethane).
    Rumpho ME; Edwards GE; Yousif AE; Keegstra K
    Plant Physiol; 1988 Apr; 86(4):1193-8. PubMed ID: 16666053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A rapid method for isolation of purified, physiologically active chloroplasts, used to study the intracellular distribution of amino acids in pea leaves.
    Mills WR; Joy KW
    Planta; 1980 Feb; 148(1):75-83. PubMed ID: 24311269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport of proteins into chloroplasts. The effect of incorporation of amino acid analogues on the import and processing of chloroplast polypeptides.
    Robinson C; Ellis RJ
    Eur J Biochem; 1985 Oct; 152(1):67-73. PubMed ID: 4043086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.