These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 16663727)

  • 61. Carbon assimilation through a vertical light gradient in the canopy of invasive herbs grown under different temperature regimes is determined by leaf and whole-plant architecture.
    Jorgensen A; Sorrell BK; Eller F
    AoB Plants; 2020 Aug; 12(4):plaa031. PubMed ID: 32850108
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Juvenile Rhus glabra leaves have higher temperatures and lower gas exchange rates than mature leaves when compared in the field during periods of high irradiance.
    Snider JL; Choinski JS; Wise RR
    J Plant Physiol; 2009 May; 166(7):686-96. PubMed ID: 18849091
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Nonstomatal inhibition of photosynthesis in sunflower at low leaf water potentials and high light intensities.
    Boyer JS
    Plant Physiol; 1971 Nov; 48(5):532-6. PubMed ID: 16657833
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Physiological strategies of co-occurring oaks in a water- and nutrient-limited ecosystem.
    Renninger HJ; Carlo N; Clark KL; Schäfer KV
    Tree Physiol; 2014 Feb; 34(2):159-73. PubMed ID: 24488856
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Assimilatory Power (Postillumination CO(2) Uptake) in Leaves: Measurement, Environmental Dependencies, and Kinetic Properties.
    Laisk A; Kiirats O; Oja V
    Plant Physiol; 1984 Nov; 76(3):723-9. PubMed ID: 16663913
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Limitations of Photosynthesis in Pinus taeda L. (Loblolly Pine) at Low Soil Temperatures.
    Day TA; Heckathorn SA; Delucia EH
    Plant Physiol; 1991 Aug; 96(4):1246-54. PubMed ID: 16668326
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Changes in Levels of Intermediates of the C(4) Cycle and Reductive Pentose Phosphate Pathway under Various Concentrations of CO(2) in Maize Leaves.
    Usuda H
    Plant Physiol; 1987 Jan; 83(1):29-32. PubMed ID: 16665209
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Gas exchange characteristics of Populus trichocarpa, Populus deltoides and Populus trichocarpa x P. deltoides clones.
    Bassman JH; Zwier JC
    Tree Physiol; 1991 Mar; 8(2):145-59. PubMed ID: 14972886
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Seasonal photosynthetic responses to light and temperature in white spruce (Picea glauca) seedlings planted under an aspen (Populus tremuloides) canopy and in the open.
    Man R; Lieffers VJ
    Tree Physiol; 1997 Jul; 17(7):437-44. PubMed ID: 14759835
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Seasonal photosynthetic gas exchange and leaf reflectance characteristics of male and female cottonwoods in a riparian woodland.
    Letts MG; Phelan CA; Johnson DR; Rood SB
    Tree Physiol; 2008 Jul; 28(7):1037-48. PubMed ID: 18450568
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Increasing leaf temperature reduces the suppression of isoprene emission by elevated CO₂ concentration.
    Potosnak MJ; Lestourgeon L; Nunez O
    Sci Total Environ; 2014 May; 481():352-9. PubMed ID: 24614154
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Gas exchange characteristics of mangosteen (Garcinia mangostana L.) leaves.
    Wiebel J; Eamus D; Chacko EK; Downton WJ; Lüdders P
    Tree Physiol; 1993 Jul; 13(1):55-69. PubMed ID: 14969901
    [TBL] [Abstract][Full Text] [Related]  

  • 73. [Eco-physiological investigations on wild and cultivated plants in the Negev Desert : II. The influence of climatic factors on carbon dioxide exchange and transpiration at the end of the dry period].
    Schulze E-; Lange OL; Koch W
    Oecologia; 1972 Dec; 8(4):334-355. PubMed ID: 28311256
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Diurnal changes in photosynthetic parameters of Populus tremuloides, modulated by elevated concentrations of CO2 and/or O3 and daily climatic variation.
    Kets K; Darbah JN; Sober A; Riikonen J; Sober J; Karnosky DF
    Environ Pollut; 2010 Apr; 158(4):1000-7. PubMed ID: 19796856
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Effects of light intensity and oxygen on photosynthesis and translocation in sugar beet.
    Servaites JC; Geiger DR
    Plant Physiol; 1974 Oct; 54(4):575-8. PubMed ID: 16658931
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Kinetics of leaf oxygen uptake represent in planta activities of respiratory electron transport and terminal oxidases.
    Laisk A; Oja V; Eichelmann H
    Physiol Plant; 2007 Sep; 131(1):1-9. PubMed ID: 18251919
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Seasonal fluctuations and temperature dependence in photosynthetic parameters and stomatal conductance at the leaf scale of Populus euphratica Oliv.
    Zhu GF; Li X; Su YH; Lu L; Huang CL
    Tree Physiol; 2011 Feb; 31(2):178-95. PubMed ID: 21411434
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Production of isoprene by leaf tissue.
    Jones CA; Rasmussen RA
    Plant Physiol; 1975 Jun; 55(6):982-7. PubMed ID: 16659231
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Leaf gas exchange and bean quality fluctuations over the whole canopy vertical profile of Arabic coffee cultivated under elevated CO
    Rakocevic M; Batista ER; Pazianotto RAA; Scholz MBS; Souza GAR; Campostrini E; Ramalho JC
    Funct Plant Biol; 2021 Apr; 48(5):469-482. PubMed ID: 33423738
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Physiological responses of pear thrips-damaged sugar maples to light and water stress.
    Kolb TE; McCormick LH; Shumway DL
    Tree Physiol; 1991 Oct; 9(3):401-13. PubMed ID: 14972850
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.