These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 16663781)

  • 1. Acetaldehyde Oxime, A Product Formed during the In Vivo Nitrate Reductase Assay of Soybean Leaves.
    Mulvaney CS; Hageman RH
    Plant Physiol; 1984 Sep; 76(1):118-24. PubMed ID: 16663781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitric Oxide and Nitrous Oxide Production by Soybean and Winged Bean during the in Vivo Nitrate Reductase Assay.
    Dean JV; Harper JE
    Plant Physiol; 1986 Nov; 82(3):718-23. PubMed ID: 16665099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitric Oxide Emissions from Soybean Leaves during in Vivo Nitrate Reductase Assays.
    Klepper LA
    Plant Physiol; 1987 Sep; 85(1):96-9. PubMed ID: 16665692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of Nitrogen Oxide(s) during In Vivo Nitrate Reductase Assay of Soybean Leaves.
    Harper JE
    Plant Physiol; 1981 Dec; 68(6):1488-93. PubMed ID: 16662132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Canopy and Seasonal Profiles of Nitrate Reductase in Soybeans (Glycine max L. Merr.).
    Harper JE
    Plant Physiol; 1972 Feb; 49(2):146-54. PubMed ID: 16657914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and accumulation of nitrite in soybean nodules supplied with nitrate.
    Streeter JG
    Plant Physiol; 1982 Jun; 69(6):1429-34. PubMed ID: 16662417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison between NO(x) Evolution Mechanisms of Wild-Type and nr(1) Mutant Soybean Leaves.
    Klepper L
    Plant Physiol; 1990 May; 93(1):26-32. PubMed ID: 16667445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrogen Redox Metabolism of a Heterotrophic, Nitrifying-Denitrifying Alcaligenes sp. from Soil.
    Castignetti D; Hollocher TC
    Appl Environ Microbiol; 1982 Oct; 44(4):923-8. PubMed ID: 16346117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uptake and reduction of [N]nitrate by intact soybean plants in the dark.
    Nicholas JC; Harper JE
    Plant Physiol; 1985 Feb; 77(2):365-9. PubMed ID: 16664059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficiency of Nitrogen Assimilation by N(2)-Fixing and Nitrate-Grown Soybean Plants (Glycine max [L.] Merr.).
    Finke RL; Harper JE; Hageman RH
    Plant Physiol; 1982 Oct; 70(4):1178-84. PubMed ID: 16662635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential effect of tungsten on the development of endogenous and nitrate-induced nitrate reductase activities in soybean leaves.
    Aslam M
    Plant Physiol; 1982 Jul; 70(1):35-8. PubMed ID: 16662475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NADH-Nitrate Reductase Inhibitor from Soybean Leaves.
    Jolly SO; Tolbert NE
    Plant Physiol; 1978 Aug; 62(2):197-203. PubMed ID: 16660485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrate Reduction by Roots of Soybean (Glycine max [L.] Merr.) Seedlings.
    Crafts-Brandner SJ; Harper JE
    Plant Physiol; 1982 Jun; 69(6):1298-303. PubMed ID: 16662390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrate inhibition of legume nodule growth and activity : I. Long term studies with a continuous supply of nitrate.
    Streeter JG
    Plant Physiol; 1985 Feb; 77(2):321-4. PubMed ID: 16664051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soybean mutants lacking constitutive nitrate reductase activity : I. Selection and initial plant characterization.
    Nelson RS; Ryan SA; Harper JE
    Plant Physiol; 1983 Jun; 72(2):503-9. PubMed ID: 16663032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The energy-conserving nitric-oxide-reductase system in Paracoccus denitrificans. Distinction from the nitrite reductase that catalyses synthesis of nitric oxide and evidence from trapping experiments for nitric oxide as a free intermediate during denitrification.
    Carr GJ; Page MD; Ferguson SJ
    Eur J Biochem; 1989 Feb; 179(3):683-92. PubMed ID: 2920732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction of oxidized inorganic nitrogen compounds by a new strain of Thiobacillus denitrificans.
    Baldensperger J; Garcia JL
    Arch Microbiol; 1975 Mar; 103(1):31-6. PubMed ID: 1164140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrate Reductases from Wild-Type and nr(1)-Mutant Soybean (Glycine max [L.] Merr.) Leaves : I. Purification, Kinetics, and Physical Properties.
    Streit L; Nelson RS; Harper JE
    Plant Physiol; 1985 May; 78(1):80-4. PubMed ID: 16664214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolism of carbon and nitrogen by soybean seedlings in response to vegetative apex removal.
    Crafts-Brandner SJ; Below FE; Harper JE; Hageman RH
    Plant Physiol; 1983 Sep; 73(1):6-10. PubMed ID: 16663186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Conversion of Nitrite to Nitrogen Oxide(s) by the Constitutive NAD(P)H-Nitrate Reductase Enzyme from Soybean.
    Dean JV; Harper JE
    Plant Physiol; 1988 Oct; 88(2):389-95. PubMed ID: 16666314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.