These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 16663876)
1. Differential role of glutamate dehydrogenase in nitrogen metabolism of maize tissues. Loyola-Vargas VM; de Jimenez ES Plant Physiol; 1984 Oct; 76(2):536-40. PubMed ID: 16663876 [TBL] [Abstract][Full Text] [Related]
2. A study of the role of glutamate dehydrogenase in the nitrogen metabolism of Arabidopsis thaliana. Cammaerts D; Jacobs M Planta; 1985 Apr; 163(4):517-26. PubMed ID: 24249451 [TBL] [Abstract][Full Text] [Related]
3. Glutamine synthetase and glutamate dehydrogenase isoforms in maize leaves: localization, relative proportion and their role in ammonium assimilation or nitrogen transport. Becker TW; Carrayol E; Hirel B Planta; 2000 Nov; 211(6):800-6. PubMed ID: 11144264 [TBL] [Abstract][Full Text] [Related]
4. Regulation of the activity of maize glutamate dehydrogenase by ammonium and potassium. Zhao Y; Gao J; Su S; Shan X; Li S; Liu H; Yuan Y; Li H Biosci Biotechnol Biochem; 2021 Feb; 85(2):262-271. PubMed ID: 33604622 [TBL] [Abstract][Full Text] [Related]
5. Role of sulphur availability on cadmium-induced changes of nitrogen and sulphur metabolism in maize (Zea mays L.) leaves. Astolfi S; Zuchi S; Passera C J Plant Physiol; 2004 Jul; 161(7):795-802. PubMed ID: 15310068 [TBL] [Abstract][Full Text] [Related]
6. Biochemical parameters to assess cell differentiation of Bouvardia ternifolia Schlecht callus. de Jiménez ES; Fernández L Planta; 1983 Aug; 158(5):377-83. PubMed ID: 24264844 [TBL] [Abstract][Full Text] [Related]
7. The localisation of enzymes of nitrogen assimilation in maize leaves and their activities during greening. Harel E; Lea PJ; Miflin BJ Planta; 1977 Jan; 134(2):195-200. PubMed ID: 24419700 [TBL] [Abstract][Full Text] [Related]
8. Bottle gourd rootstock-grafting affects nitrogen metabolism in NaCl-stressed watermelon leaves and enhances short-term salt tolerance. Yang Y; Lu X; Yan B; Li B; Sun J; Guo S; Tezuka T J Plant Physiol; 2013 May; 170(7):653-61. PubMed ID: 23399406 [TBL] [Abstract][Full Text] [Related]
9. Inorganic nitrogen assimilation in yeasts: alteration in enzyme activities associated with changes in cultural conditions and growth phase. Thomulka KW; Moat AG J Bacteriol; 1972 Jan; 109(1):25-33. PubMed ID: 4400414 [TBL] [Abstract][Full Text] [Related]
10. Glutamine synthetase and glutamate dehydrogenase contribute differentially to proline accumulation in leaves of wheat (Triticum aestivum) seedlings exposed to different salinity. Wang ZQ; Yuan YZ; Ou JQ; Lin QH; Zhang CF J Plant Physiol; 2007 Jun; 164(6):695-701. PubMed ID: 16777263 [TBL] [Abstract][Full Text] [Related]
11. Deamination role of inducible glutamate dehydrogenase isoenzyme 7 in Brassica napus leaf protoplasts. Watanabe M; Yumi O; Itoh Y; Yasuda K; Kamachi K; Ratcliffe RG Phytochemistry; 2011 May; 72(7):587-93. PubMed ID: 21353684 [TBL] [Abstract][Full Text] [Related]
13. Mineral nitrogen sources differently affect root glutamine synthetase isoforms and amino acid balance among organs in maize. Prinsi B; Espen L BMC Plant Biol; 2015 Apr; 15():96. PubMed ID: 25886826 [TBL] [Abstract][Full Text] [Related]
14. Characteristics of glutamate dehydrogenase in mitochondria prepared from corn shoots. Yamaya T; Oaks A; Matsumoto H Plant Physiol; 1984 Dec; 76(4):1009-13. PubMed ID: 16663940 [TBL] [Abstract][Full Text] [Related]
15. Nitrogen metabolism in leaves of a tank epiphytic bromeliad: characterization of a spatial and functional division. Takahashi CA; Mercier H J Plant Physiol; 2011 Jul; 168(11):1208-16. PubMed ID: 21333380 [TBL] [Abstract][Full Text] [Related]
16. Exogenous 2-(3,4-Dichlorophenoxy) triethylamine ameliorates the soil drought effect on nitrogen metabolism in maize during the pre-female inflorescence emergence stage. Xie T; Gu W; Wang M; Zhang L; Li C; Li C; Li W; Li L; Wei S BMC Plant Biol; 2019 Mar; 19(1):107. PubMed ID: 30890144 [TBL] [Abstract][Full Text] [Related]
17. A mutant of Saccharomyces cerevisiae lacking catabolic NAD-specific glutamate dehydrogenase. Growth characteristics of the mutant and regulation of enzyme synthesis in the wild-type strain. Middelhoven WJ; van Eijk J; van Renesse R; Blijham JM Antonie Van Leeuwenhoek; 1978; 44(3-4):311-20. PubMed ID: 222204 [TBL] [Abstract][Full Text] [Related]
18. Robust regulation of hepatic pericentral amination by glutamate dehydrogenase kinetics. Bera S; Lamba S; Rashid M; Sharma AK; Medvinsky AB; Acquisti C; Chakraborty A; Li BL Integr Biol (Camb); 2016 Nov; 8(11):1126-1132. PubMed ID: 27747338 [TBL] [Abstract][Full Text] [Related]
19. Nickel-induced changes in nitrogen metabolism in wheat shoots. Gajewska E; Skłodowska M J Plant Physiol; 2009 Jul; 166(10):1034-44. PubMed ID: 19185388 [TBL] [Abstract][Full Text] [Related]
20. Respective roles of the glutamine synthetase/glutamate synthase cycle and glutamate dehydrogenase in ammonium and amino acid metabolism during germination and post-germinative growth in the model legume Medicago truncatula. Glevarec G; Bouton S; Jaspard E; Riou MT; Cliquet JB; Suzuki A; Limami AM Planta; 2004 Jun; 219(2):286-97. PubMed ID: 14991406 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]