These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 16663997)

  • 1. Economy of water, carbon, and nitrogen in the developing cowpea fruit.
    Peoples MB; Pate JS; Atkins CA; Murray DR
    Plant Physiol; 1985 Jan; 77(1):142-7. PubMed ID: 16663997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nutrition of a developing legume fruit: functional economy in terms of carbon, nitrogen, water.
    Pate JS; Sharkey PJ; Atkins CA
    Plant Physiol; 1977 Mar; 59(3):506-10. PubMed ID: 16659881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrogen nutrition and metabolic interconversions of nitrogenous solutes in developing cowpea fruits.
    Peoples MB; Atkins CA; Pate JS; Murray DR
    Plant Physiol; 1985 Feb; 77(2):382-8. PubMed ID: 16664063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diurnal water balance of the cowpea fruit.
    Pate JS; Peoples MB; van Bel AJ; Kuo J; Atkins CA
    Plant Physiol; 1985 Jan; 77(1):148-56. PubMed ID: 16663998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Significance of photosynthetic and respiratory exchanges in the carbon economy of the developing pea fruit.
    Flinn AM; Atkins CA; Pate JS
    Plant Physiol; 1977 Sep; 60(3):412-8. PubMed ID: 16660104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spontaneous Phloem bleeding from cryopunctured fruits of a ureide-producing legume.
    Pate JS; Peoples MB; Atkins CA
    Plant Physiol; 1984 Mar; 74(3):499-505. PubMed ID: 16663451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Allantoin and Allantoic Acid in the Nitrogen Economy of the Cowpea (Vigna unguiculata [L.] Walp.).
    Herridge DF; Atkins CA; Pate JS; Rainbird RM
    Plant Physiol; 1978 Oct; 62(4):495-8. PubMed ID: 16660546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilization of net photosynthate for nitrogen fixation and protein production in an annual legume.
    Herridge DF; Pate JS
    Plant Physiol; 1977 Nov; 60(5):759-64. PubMed ID: 16660179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolism and translocation of allantoin in ureide-producing grain legumes.
    Atkins CA; Pate JS; Ritchie A; Peoples MB
    Plant Physiol; 1982 Aug; 70(2):476-82. PubMed ID: 16662519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fruit transpiration drives interspecific variability in fruit growth strategies.
    Rossi F; Manfrini L; Venturi M; Grappadelli LC; Morandi B
    Hortic Res; 2022 Feb; 9():. PubMed ID: 35184185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Significance of hydrogen evolution in the carbon and nitrogen economy of nodulated cowpea.
    Rainbird RM; Atkins CA; Pate JS; Sanford P
    Plant Physiol; 1983 Jan; 71(1):122-7. PubMed ID: 16662769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Economy of Carbon and Nitrogen in Nodulated and Nonnodulated (NO(3)-grown) Cowpea [Vigna unguiculata (L.) Walp.].
    Atkins CA; Pate JS; Griffiths GJ; White ST
    Plant Physiol; 1980 Nov; 66(5):978-83. PubMed ID: 16661564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water transport in fleshy fruits: Research advances, methodologies, and future directions.
    Hou X; Li H; Zhang W; Yao Z; Wang Y; Du T
    Physiol Plant; 2021 Aug; 172(4):2203-2216. PubMed ID: 34050530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Economy of Photosynthate Use in Nitrogen-fixing Legume Nodules: Observations on Two Contrasting Symbioses.
    Layzell DB; Rainbird RM; Atkins CA; Pate JS
    Plant Physiol; 1979 Nov; 64(5):888-91. PubMed ID: 16661076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vascular flows and transpiration affect peach (Prunus persica Batsch.) fruit daily growth.
    Morandi B; Rieger M; Grappadelli LC
    J Exp Bot; 2007; 58(14):3941-7. PubMed ID: 18037679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for light-dependent recycling of respired carbon dioxide by the cotton fruit.
    Wullschleger SD; Oosterhuis DM; Hurren RG; Hanson PJ
    Plant Physiol; 1991 Oct; 97(2):574-9. PubMed ID: 16668437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Xylem, phloem and transpiration flows in developing European plums.
    Winkler A; Knoche M
    PLoS One; 2021; 16(5):e0252085. PubMed ID: 34015019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling C and N transport to developing soybean fruits.
    Layzell DB; Larue TA
    Plant Physiol; 1982 Nov; 70(5):1290-8. PubMed ID: 16662669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increasing water stress negatively affects pear fruit growth by reducing first its xylem and then its phloem inflow.
    Morandi B; Losciale P; Manfrini L; Zibordi M; Anconelli S; Galli F; Pierpaoli E; Corelli Grappadelli L
    J Plant Physiol; 2014 Oct; 171(16):1500-9. PubMed ID: 25105235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discharge of surplus phloem water may be required for normal grape ripening.
    Zhang Y; Keller M
    J Exp Bot; 2017 Jan; 68(3):585-595. PubMed ID: 28082510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.