These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 16663998)

  • 1. Diurnal water balance of the cowpea fruit.
    Pate JS; Peoples MB; van Bel AJ; Kuo J; Atkins CA
    Plant Physiol; 1985 Jan; 77(1):148-56. PubMed ID: 16663998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneous Phloem bleeding from cryopunctured fruits of a ureide-producing legume.
    Pate JS; Peoples MB; Atkins CA
    Plant Physiol; 1984 Mar; 74(3):499-505. PubMed ID: 16663451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Economy of water, carbon, and nitrogen in the developing cowpea fruit.
    Peoples MB; Pate JS; Atkins CA; Murray DR
    Plant Physiol; 1985 Jan; 77(1):142-7. PubMed ID: 16663997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sugar demand of ripening grape berries leads to recycling of surplus phloem water via the xylem.
    Keller M; Zhang Y; Shrestha PM; Biondi M; Bondada BR
    Plant Cell Environ; 2015 Jun; 38(6):1048-59. PubMed ID: 25293537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of export of organic material from the developing fruits of pea.
    Hamilton DA; Davies PJ
    Plant Physiol; 1988 Mar; 86(3):956-9. PubMed ID: 16666016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolism and translocation of allantoin in ureide-producing grain legumes.
    Atkins CA; Pate JS; Ritchie A; Peoples MB
    Plant Physiol; 1982 Aug; 70(2):476-82. PubMed ID: 16662519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model-assisted analysis of the peach pedicel-fruit system suggests regulation of sugar uptake and a water-saving strategy.
    Constantinescu D; Vercambre G; GĂ©nard M
    J Exp Bot; 2020 Jun; 71(12):3463-3474. PubMed ID: 32420599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Apoplasmic and simplasmic phloem unloading mechanisms: Do they co-exist in Angeleno plums under demanding environmental conditions?
    Corelli Grappadelli L; Morandi B; Manfrini L; O'Connell M
    J Plant Physiol; 2019 Jun; 237():104-110. PubMed ID: 31055228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Xylem to phloem transfer of solutes in fruiting shoots of legumes, studied by a phloem bleeding technique.
    Pate JS; Sharkey PJ; Lewis OA
    Planta; 1975 Jan; 122(1):11-26. PubMed ID: 24435917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vascular functioning and the water balance of ripening kiwifruit (Actinidia chinensis) berries.
    Clearwater MJ; Luo Z; Ong SE; Blattmann P; Thorp TG
    J Exp Bot; 2012 Mar; 63(5):1835-47. PubMed ID: 22155631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrogen nutrition and metabolic interconversions of nitrogenous solutes in developing cowpea fruits.
    Peoples MB; Atkins CA; Pate JS; Murray DR
    Plant Physiol; 1985 Feb; 77(2):382-8. PubMed ID: 16664063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discharge of surplus phloem water may be required for normal grape ripening.
    Zhang Y; Keller M
    J Exp Bot; 2017 Jan; 68(3):585-595. PubMed ID: 28082510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selectivity in xylem to phloem transfer of amino acids in fruiting shoots of white lupin (Lupinus albus L.).
    Sharkey PJ; Pate JS
    Planta; 1975 Jan; 127(3):251-62. PubMed ID: 24430475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling C and N transport to developing soybean fruits.
    Layzell DB; Larue TA
    Plant Physiol; 1982 Nov; 70(5):1290-8. PubMed ID: 16662669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Xylem, phloem and transpiration flows in developing European plums.
    Winkler A; Knoche M
    PLoS One; 2021; 16(5):e0252085. PubMed ID: 34015019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The extrafloral nectaries of cowpea (Vigna unguiculata (L.) Walp.) II. Nectar composition, origin of nectar solutes, and nectary functioning.
    Pate JS; Peoples MB; Storer PJ; Atkins CA
    Planta; 1985 Sep; 166(1):28-38. PubMed ID: 24241308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water transport in fleshy fruits: Research advances, methodologies, and future directions.
    Hou X; Li H; Zhang W; Yao Z; Wang Y; Du T
    Physiol Plant; 2021 Aug; 172(4):2203-2216. PubMed ID: 34050530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Most water in the tomato truss is imported through the xylem, not the phloem: a nuclear magnetic resonance flow imaging study.
    Windt CW; Gerkema E; Van As H
    Plant Physiol; 2009 Oct; 151(2):830-42. PubMed ID: 19710234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vascular flows and transpiration affect peach (Prunus persica Batsch.) fruit daily growth.
    Morandi B; Rieger M; Grappadelli LC
    J Exp Bot; 2007; 58(14):3941-7. PubMed ID: 18037679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional xylem in the post-veraison grape berry.
    Bondada BR; Matthews MA; Shackel KA
    J Exp Bot; 2005 Nov; 56(421):2949-57. PubMed ID: 16207748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.