These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 16664075)

  • 1. Stomatal Responses to CO(2) in Paphiopedilum and Phragmipedium: Role of the Guard Cell Chloroplast.
    Assmann SM; Zeiger E
    Plant Physiol; 1985 Feb; 77(2):461-4. PubMed ID: 16664075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gas exchange in paphiopedilum: lack of chloroplasts in guard cells correlates with low stomatal conductance.
    Williams WE; Grivet C; Zeiger E
    Plant Physiol; 1983 Jul; 72(3):906-8. PubMed ID: 16663108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slow photosynthetic induction and low photosynthesis in Paphiopedilum armeniacum are related to its lack of guard cell chloroplast and peculiar stomatal anatomy.
    Zhang SB; Guan ZJ; Chang W; Hu H; Yin Q; Cao KF
    Physiol Plant; 2011 Jun; 142(2):118-27. PubMed ID: 21241312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of the Stomatal Response to Blue Light by Red Light, Reduced Intercellular Concentrations of CO(2), and Low Vapor Pressure Differences.
    Assmann SM
    Plant Physiol; 1988 May; 87(1):226-31. PubMed ID: 16666108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photocontrol of the Functional Coupling between Photosynthesis and Stomatal Conductance in the Intact Leaf : Blue Light and Par-Dependent Photosystems in Guard Cells.
    Zeiger E; Field C
    Plant Physiol; 1982 Aug; 70(2):370-5. PubMed ID: 16662498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stomatal Limitation to Carbon Gain in Paphiopedilum sp. (Orchidaceae) and Its Reversal by Blue Light.
    Zeiger E; Grivet C; Assmann SM; Deitzer GF; Hannegan MW
    Plant Physiol; 1985 Feb; 77(2):456-60. PubMed ID: 16664074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separation and measurement of direct and indirect effects of light on stomata.
    Sharkey TD; Raschke K
    Plant Physiol; 1981 Jul; 68(1):33-40. PubMed ID: 16661884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light quality and osmoregulation in vicia guard cells : evidence for involvement of three metabolic pathways.
    Tallman G; Zeiger E
    Plant Physiol; 1988 Nov; 88(3):887-95. PubMed ID: 16666400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interspecific Variation in SO(2) Flux : Leaf Surface versus Internal Flux, and Components of Leaf Conductance.
    Olszyk DM; Tingey DT
    Plant Physiol; 1985 Dec; 79(4):949-56. PubMed ID: 16664551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytochrome and blue light-mediated stomatal opening in the orchid, paphiopedilum.
    Talbott LD; Zhu J; Han SW; Zeiger E
    Plant Cell Physiol; 2002 Jun; 43(6):639-46. PubMed ID: 12091717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of Photosynthesis and Stomatal Conductance in Ricinus communis L. (Castor Bean) by Leaf to Air Vapor Pressure Deficit.
    Dai Z; Edwards GE; Ku MS
    Plant Physiol; 1992 Aug; 99(4):1426-34. PubMed ID: 16669054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sugar Concentrations in Guard Cells of Vicia faba Illuminated with Red or Blue Light : Analysis by High Performance Liquid Chromatography.
    Poffenroth M; Green DB; Tallman G
    Plant Physiol; 1992 Apr; 98(4):1460-71. PubMed ID: 16668815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anatomical and diffusional determinants inside leaves explain the difference in photosynthetic capacity between Cypripedium and Paphiopedilum, Orchidaceae.
    Yang ZH; Huang W; Yang QY; Chang W; Zhang SB
    Photosynth Res; 2018 Jun; 136(3):315-328. PubMed ID: 29159723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Responses of Adaxial and Abaxial Stomata of Normally Oriented and Inverted Leaves of Vicia faba L. to Light.
    Yera R; Davis S; Frazer J; Tallman G
    Plant Physiol; 1986 Oct; 82(2):384-9. PubMed ID: 16665038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The response of foliar gas exchange to exogenously applied ethylene.
    Taylor GE; Gunderson CA
    Plant Physiol; 1986 Nov; 82(3):653-7. PubMed ID: 16665086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prechilling of Xanthium strumarium L. Reduces Net Photosynthesis and, Independently, Stomatal Conductance, While Sensitizing the Stomata to CO(2).
    Drake B; Raschke K
    Plant Physiol; 1974 Jun; 53(6):808-12. PubMed ID: 16658795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photosynthetic and stomatal responses of spinach leaves to salt stress.
    Downton WJ; Grant WJ; Robinson SP
    Plant Physiol; 1985 May; 78(1):85-8. PubMed ID: 16664215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leaf photosynthesis and conductance of selected triticum species at different water potentials.
    Johnson RC; Mornhinweg DW; Ferris DM; Heitholt JJ
    Plant Physiol; 1987 Apr; 83(4):1014-7. PubMed ID: 16665315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stomatal conductance does not correlate with photosynthetic capacity in transgenic tobacco with reduced amounts of Rubisco.
    von Caemmerer S; Lawson T; Oxborough K; Baker NR; Andrews TJ; Raines CA
    J Exp Bot; 2004 May; 55(400):1157-66. PubMed ID: 15107451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diurnal and seasonal changes in the impact of CO(2) enrichment on assimilation, stomatal conductance and growth in a long-term study of Mangifera indica in the wet-dry tropics of Australia.
    Goodfellow J; Eamus D; Duff G
    Tree Physiol; 1997 May; 17(5):291-9. PubMed ID: 14759852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.