These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 166641)

  • 1. Inhibition of EF-G dependent GTPase by an aminoterminal fragment of L7/L12.
    Agthoven AJ; Maassen JA; Schrier PI; Möller W
    Biochem Biophys Res Commun; 1975 Jun; 64(4):1184-91. PubMed ID: 166641
    [No Abstract]   [Full Text] [Related]  

  • 2. Guanosinetriphosphatase activity dependent on elongation factor Tu and ribosomal protein L7/L12.
    Donner D; Villems R; Liljas A; Kurland CG
    Proc Natl Acad Sci U S A; 1978 Jul; 75(7):3192-5. PubMed ID: 210452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and phosphorylation of an acidic protein from 60S ribosomes and its involvement in elongation factor-2 dependent GTP hydrolysis.
    van Agthoven AJ; Maassen JA; Möller W
    Biochem Biophys Res Commun; 1977 Aug; 77(3):989-98. PubMed ID: 197953
    [No Abstract]   [Full Text] [Related]  

  • 4. Dimer state of protein L7/L12 and EF-G-dependent reactions of ribosomes.
    Koteliansky VE; Domogatsky SP; Gudkov AT
    Eur J Biochem; 1978 Oct; 90(2):319-23. PubMed ID: 361401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of kirromycin on elongation factor Tu. Location of the catalytic center for ribosome-elongation-factor-Tu GTPase activity on the elongation factor.
    Chinali G; Wolf H; Parmeggiani A
    Eur J Biochem; 1977 May; 75(1):55-65. PubMed ID: 193689
    [No Abstract]   [Full Text] [Related]  

  • 6. The GTPase activity of elongation factor Tu and the 3'-terminal end of aminoacyl-tRNA.
    Parlato G; Guesnet J; Crechet JB; Parmeggiani A
    FEBS Lett; 1981 Mar; 125(2):257-60. PubMed ID: 6112171
    [No Abstract]   [Full Text] [Related]  

  • 7. The number of copies of ribosome-bound proteins L7 and L12 required for protein synthesis activity.
    Lee CC; Cantor CR; Wittmann-Liebold B
    J Biol Chem; 1981 Jan; 256(1):41-8. PubMed ID: 6108955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional role of acidic ribosomal proteins. Interchangeability of proteins from bacterial and eukaryotic cells.
    Sánchez-Madrid F; Vidales FJ; Ballesta JP
    Biochemistry; 1981 May; 20(11):3263-6. PubMed ID: 6113843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical modification in situ of Escherichia coli 50 S ribosomal proteins by the site-specific reagent pyridoxal phosphate. Inactivation of the elongation factor-G-dependent GTPase and of the association with the small ribosomal subunit.
    Ohsawa H; Ohsawa E; Giovane A; Gualerzi C
    J Biol Chem; 1983 Jan; 258(1):157-62. PubMed ID: 6129249
    [No Abstract]   [Full Text] [Related]  

  • 10. Elongation factor 1 from the silk gland of silkworm. Effect of EF-1b on EF-1a- and ribosome-dependent GTPase activity.
    Murakami K; Ejiri S; Katsumata T
    FEBS Lett; 1978 Aug; 92(2):255-7. PubMed ID: 212299
    [No Abstract]   [Full Text] [Related]  

  • 11. Activity of the 30-S CsCl core in elongation-factor-dependent GTP hydrolysis.
    Sander G; Marsh RC; Parmeggiani A
    Eur J Biochem; 1976 Jan; 61(1):317-23. PubMed ID: 173554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A ribosome-dependent GTPase from yeast distinct from elongation factor 2.
    Skogerson L; Wakatama E
    Proc Natl Acad Sci U S A; 1976 Jan; 73(1):73-6. PubMed ID: 174100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The involvement of 50S ribosomal protein l11 in the EF-G dependent GTP hydrolysis of E. coli ribosomes.
    Schrier PI; Möller W
    FEBS Lett; 1975 Jun; 54(2):130-4. PubMed ID: 165973
    [No Abstract]   [Full Text] [Related]  

  • 14. The elongation factor G carries a catalytic site for GTP hydrolysis, which is revealed by using 2-propanol in the absence of ribosomes.
    De Vendittis E; Masullo M; Bocchini V
    J Biol Chem; 1986 Apr; 261(10):4445-50. PubMed ID: 3007457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of the ribosome-dependent uncoupled GTPase reaction catalyzed by polypeptide chain elongation factor G.
    Arai N; Kaziro Y
    J Biochem; 1975 Feb; 77(2):439-47. PubMed ID: 165176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The L7/L12 proteins change their conformation upon interaction of EF-G with ribosomes.
    Gudkov AT; Gongadze GM
    FEBS Lett; 1984 Oct; 176(1):32-6. PubMed ID: 6092137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of the uncoupled GTPase activity of elongation factor G (EF-G) by the conformations of the ribosomal subunits.
    Nagel K; Voigt J
    Biochim Biophys Acta; 1993 Aug; 1174(2):153-61. PubMed ID: 8357832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome.
    Rodnina MV; Savelsbergh A; Katunin VI; Wintermeyer W
    Nature; 1997 Jan; 385(6611):37-41. PubMed ID: 8985244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between elongation factor I- and elongation factor II- dependent guanosine triphosphatase activities of ribosomes. Inhibition of both activities by ricin.
    Sperti S; Montanaro L; Mattioli A; Testoni G
    Biochem J; 1975 Jun; 148(3):447-51. PubMed ID: 173282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properties and regulation of the GTPase activities of elongation factors Tu and G, and of initiation factor 2.
    Parmeggiani A; Sander G
    Mol Cell Biochem; 1981 Mar; 35(3):129-58. PubMed ID: 6113539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.