BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 16664177)

  • 21. Spectral perturbations and oligomer/monomer formation in 124-kilodalton Avena phytochrome.
    Choi JK; Kim IS; Kwon TI; Parker W; Song PS
    Biochemistry; 1990 Jul; 29(29):6883-91. PubMed ID: 2204422
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A photoreversible circular dichroism spectral change in oat phytochrome is suppressed by a monoclonal antibody that binds near its N-terminus and by chromophore modification.
    Chai YG; Song PS; Cordonnier MM; Pratt LH
    Biochemistry; 1987 Aug; 26(16):4947-52. PubMed ID: 3663636
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inverse dark reversion of phytochrome: An explanation.
    Kendrick RE; Spruit CJ
    Planta; 1974 Jan; 120(3):265-72. PubMed ID: 24442701
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ubiquitin-phytochrome conjugates. Pool dynamics during in vivo phytochrome degradation.
    Jabben M; Shanklin J; Vierstra RD
    J Biol Chem; 1989 Mar; 264(9):4998-5005. PubMed ID: 2538468
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carboxy-terminal deletion analysis of oat phytochrome A reveals the presence of separate domains required for structure and biological activity.
    Cherry JR; Hondred D; Walker JM; Keller JM; Hershey HP; Vierstra RD
    Plant Cell; 1993 May; 5(5):565-75. PubMed ID: 8518556
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modifications of Sulfhydryl Groups on Phytochrome and Their Influence on Physicochemical Differences between the Red- and Far-Red-Absorbing Forms.
    Smith WO; Cyr KL
    Plant Physiol; 1988 May; 87(1):195-200. PubMed ID: 16666102
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cloning of cDNA for phytochrome from etiolated Cucurbita and coordinate photoregulation of the abundance of two distinct phytochrome transcripts.
    Lissemore JL; Colbert JT; Quail PH
    Plant Mol Biol; 1987 Nov; 8(6):485-96. PubMed ID: 24301311
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Red light-induced accumulation of ubiquitin-phytochrome conjugates in both monocots and dicots.
    Jabben M; Shanklin J; Vierstra RD
    Plant Physiol; 1989 Jun; 90(2):380-4. PubMed ID: 16666778
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mapping of antigenic domains on phytochrome from etiolated Avena sativa L. by immunoblot analysis of proteolytically derived peptides.
    Pratt LH; Cordonnier MM; Lagarias JC
    Arch Biochem Biophys; 1988 Dec; 267(2):723-35. PubMed ID: 2463784
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Purification and spectroscopic properties of 124-kDa oat phytochrome.
    Chai YG; Singh BR; Song PS; Lee J; Robinson GW
    Anal Biochem; 1987 Jun; 163(2):322-30. PubMed ID: 3661984
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chromophore incorporation, Pr to Pfr kinetics, and Pfr thermal reversion of recombinant N-terminal fragments of phytochrome A and B chromoproteins.
    Remberg A; Ruddat A; Braslavsky SE; Gärtner W; Schaffner K
    Biochemistry; 1998 Jul; 37(28):9983-90. PubMed ID: 9665703
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermal Reversion of Plant Phytochromes.
    Klose C; Nagy F; Schäfer E
    Mol Plant; 2020 Mar; 13(3):386-397. PubMed ID: 31812690
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differences in the physical properties of native and partially degraded phytochrome as probed by their differential sensitivity to permanganate oxidation.
    Baron O; Epel BL
    Plant Physiol; 1983 Oct; 73(2):471-4. PubMed ID: 16663241
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Agrobacterium phytochrome as an enzyme for the production of ZZE bilins.
    Lamparter T; Michael N
    Biochemistry; 2005 Jun; 44(23):8461-9. PubMed ID: 15938635
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Measurement of Phytochrome B Thermal Reversion Rates In Vivo.
    Klose C; Hiltbrunner A
    Methods Mol Biol; 2024; 2795():85-93. PubMed ID: 38594530
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanism of native oat phytochrome photoreversion: a time-resolved absorption investigation.
    Chen E; Lapko VN; Lewis JW; Song PS; Kliger DS
    Biochemistry; 1996 Jan; 35(3):843-50. PubMed ID: 8547264
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phytochrome structure: Peptide fragments from the amino-terminal domain involved in protein-chromophore interactions.
    Jones AM; Quail PH
    Planta; 1989 May; 178(2):147-56. PubMed ID: 24212743
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recombinant phytochrome of the moss Ceratodon purpureus: heterologous expression and kinetic analysis of Pr-->Pfr conversion.
    Zeidler M; Lamparter T; Hughes J; Hartmann E; Remberg A; Braslavsky S; Schaffner K; Gärtner W
    Photochem Photobiol; 1998 Dec; 68(6):857-63. PubMed ID: 9867036
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Both subunits of the dimeric plant photoreceptor phytochrome require chromophore for stability of the far-red light-absorbing form.
    Hennig L; Schäfer E
    J Biol Chem; 2001 Mar; 276(11):7913-8. PubMed ID: 11106666
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sequences within both the N- and C-terminal domains of phytochrome A are required for PFR ubiquitination and degradation.
    Clough RC; Jordan-Beebe ET; Lohman KN; Marita JM; Walker JM; Gatz C; Vierstra RD
    Plant J; 1999 Jan; 17(2):155-67. PubMed ID: 10074713
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.