BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 16664185)

  • 21. Carbon dioxide enhances the development of the ethylene forming enzyme in tobacco leaf discs.
    Philosoph-Hadas S; Aharoni N; Yang SF
    Plant Physiol; 1986 Dec; 82(4):925-9. PubMed ID: 16665167
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An Ethylene Biosynthesis-Inducing Endoxylanase Elicits Electrolyte Leakage and Necrosis in Nicotiana tabacum cv Xanthi Leaves.
    Bailey BA; Dean JF; Anderson JD
    Plant Physiol; 1990 Dec; 94(4):1849-54. PubMed ID: 16667926
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Involvement of HLS1 in sugar and auxin signaling in Arabidopsis leaves.
    Ohto MA; Hayashi S; Sawa S; Hashimoto-Ohta A; Nakamura K
    Plant Cell Physiol; 2006 Dec; 47(12):1603-11. PubMed ID: 17071622
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effects of mepiquat chloride on the lateral root initiation of cotton seedlings are associated with auxin and auxin-conjugate homeostasis.
    Chen X; Zhang M; Wang M; Tan G; Zhang M; Hou YX; Wang B; Li Z
    BMC Plant Biol; 2018 Dec; 18(1):361. PubMed ID: 30563457
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An auxin-responsive 1-aminocyclopropane-1-carboxylate synthase is responsible for differential ethylene production in gravistimulated Antirrhinum majus L. flower stems.
    Woltering EJ; Balk PA; Nijenhuis-Devries MA; Faivre M; Ruys G; Somhorst D; Philosoph-Hadas S; Friedman H
    Planta; 2005 Jan; 220(3):403-13. PubMed ID: 15349780
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inhibitory action of auxin on root elongation not mediated by ethylene.
    Eliasson L; Bertell G; Bolander E
    Plant Physiol; 1989 Sep; 91(1):310-4. PubMed ID: 16667017
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Auxin-induced Ethylene Production and Its Inhibition by Aminoethyoxyvinylglycine and Cobalt Ion.
    Yu YB; Yang SF
    Plant Physiol; 1979 Dec; 64(6):1074-7. PubMed ID: 16661095
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancement by ethylene of cellulysin-induced ethylene production by tobacco leaf discs.
    Chalutz E; Mattoo AK; Solomos T; Anderson JD
    Plant Physiol; 1984 Jan; 74(1):99-103. PubMed ID: 16663395
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of Ethylene Treatment on Polar IAA Transport, Net IAA Uptake and Specific Binding of N-1-Naphthylphthalamic Acid in Tissues and Microsomes Isolated from Etiolated Pea Epicotyls.
    Suttle JC
    Plant Physiol; 1988 Nov; 88(3):795-9. PubMed ID: 16666386
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A developmental gradient in the mechanism of K+ uptake during light-stimulated leaf growth in Nicotiana tabacum L.
    Stiles KA; McClintick A; Van Volkenburgh E
    Planta; 2003 Aug; 217(4):587-96. PubMed ID: 12905020
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Auxin-Induced Epinasty of Tobacco Leaf Tissues (A Nonethylene-Mediated Response).
    Keller CP; Van Volkenburgh E
    Plant Physiol; 1997 Feb; 113(2):603-610. PubMed ID: 12223629
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of plant hormones on sucrose uptake by sugar beet root tissue discs.
    Saftner RA; Wyse RE
    Plant Physiol; 1984 Apr; 74(4):951-5. PubMed ID: 16663540
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The relationship of indole-3-acetic acid content and growth of crown-gall tumor tissues of tobacco in culture.
    Pengelly WL; Meins F
    Differentiation; 1982; 21(1):27-31. PubMed ID: 7067941
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Auxin and brassinosteroid differentially regulate the expression of three members of the 1-aminocyclopropane-1-carboxylate synthase gene family in mung bean (Vigna radiata L.).
    Yi HC; Joo S; Nam KH; Lee JS; Kang BG; Kim WT
    Plant Mol Biol; 1999 Nov; 41(4):443-54. PubMed ID: 10608655
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phenotypic characterization of a tobacco mutant impaired in auxin polar transport.
    Naderi M; Caplan A; Berger PH
    Plant Cell Rep; 1997 Nov; 17(1):32-38. PubMed ID: 30732416
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A family of auxin-conjugate hydrolases that contributes to free indole-3-acetic acid levels during Arabidopsis germination.
    Rampey RA; LeClere S; Kowalczyk M; Ljung K; Sandberg G; Bartel B
    Plant Physiol; 2004 Jun; 135(2):978-88. PubMed ID: 15155875
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ethylene and auxin interaction in the control of adventitious rooting in Arabidopsis thaliana.
    Veloccia A; Fattorini L; Della Rovere F; Sofo A; D'Angeli S; Betti C; Falasca G; Altamura MM
    J Exp Bot; 2016 Dec; 67(22):6445-6458. PubMed ID: 27831474
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Probing a Membrane Matrix Regulating Hormone Action: II. The Kinetics of Lipid-Induced Growth and Ethylene Production.
    Iwata T; Stowe BB
    Plant Physiol; 1973 Apr; 51(4):691-701. PubMed ID: 16658394
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inactive methyl indole-3-acetic acid ester can be hydrolyzed and activated by several esterases belonging to the AtMES esterase family of Arabidopsis.
    Yang Y; Xu R; Ma CJ; Vlot AC; Klessig DF; Pichersky E
    Plant Physiol; 2008 Jul; 147(3):1034-45. PubMed ID: 18467465
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The stimulation of cell extension by ethylene and auxin in aquatic plants.
    Cookson C; Osborne DJ
    Planta; 1978 Jan; 144(1):39-47. PubMed ID: 24408642
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.