These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 16664294)

  • 1. Movement of Abscisic Acid into the Apoplast in Response to Water Stress in Xanthium strumarium L.
    Cornish K; Zeevaart JA
    Plant Physiol; 1985 Jul; 78(3):623-6. PubMed ID: 16664294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and movement of abscisic Acid in water-stressed cotton leaves.
    Ackerson RC
    Plant Physiol; 1982 Mar; 69(3):609-13. PubMed ID: 16662258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Abscisic Acid Metabolism in Relation to Water Stress and Leaf Age in Xanthium strumarium.
    Cornish K; Zeevaart JA
    Plant Physiol; 1984 Dec; 76(4):1029-35. PubMed ID: 16663944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in the Levels of Abscisic Acid and Its Metabolites in Excised Leaf Blades of Xanthium strumarium during and after Water Stress.
    Zeevaart JA
    Plant Physiol; 1980 Oct; 66(4):672-8. PubMed ID: 16661500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Abscisic Acid Movement into the Apoplastic solution of Water-Stressed Cotton Leaves: Role of Apoplastic pH.
    Hartung W; Radin JW; Hendrix DL
    Plant Physiol; 1988 Mar; 86(3):908-13. PubMed ID: 16666007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Abscisic Acid Accumulation by Roots of Xanthium strumarium L. and Lycopersicon esculentum Mill. in Relation to Water Stress.
    Cornish K; Zeevaart JA
    Plant Physiol; 1985 Nov; 79(3):653-8. PubMed ID: 16664467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation between loss of turgor and accumulation of abscisic acid in detached leaves.
    Pierce M; Raschke K
    Planta; 1980 Mar; 148(2):174-82. PubMed ID: 24309706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accumulation and transport of abscisic Acid and its metabolites in ricinus and xanthium.
    Zeevaart JA; Boyer GL
    Plant Physiol; 1984 Apr; 74(4):934-9. PubMed ID: 16663536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The apoplastic pool of abscisic acid in cotton leaves in relation to stomatal closure.
    Radin JW; Hendrix DL
    Planta; 1988 May; 174(2):180-6. PubMed ID: 24221474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abscisic Acid Content, Transpiration, and Stomatal Conductance As Related to Leaf Age in Plants of Xanthium strumarium L.
    Raschke K; Zeevaart JA
    Plant Physiol; 1976 Aug; 58(2):169-74. PubMed ID: 16659640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Abscisic Acid Biosynthesis in Leaves and Roots of Xanthium strumarium.
    Creelman RA; Gage DA; Stults JT; Zeevaart JA
    Plant Physiol; 1987 Nov; 85(3):726-32. PubMed ID: 16665768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chloride-inducible transient apoplastic alkalinizations induce stomata closure by controlling abscisic acid distribution between leaf apoplast and guard cells in salt-stressed Vicia faba.
    Geilfus CM; Mithöfer A; Ludwig-Müller J; Zörb C; Muehling KH
    New Phytol; 2015 Nov; 208(3):803-16. PubMed ID: 26096890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous requirement of carbon dioxide and abscisic acid for stomatal closing in Xanthium strumarium L.
    Raschke K
    Planta; 1975 Jan; 125(3):243-59. PubMed ID: 24435438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leaf apoplastic alkalization promotes transcription of the ABA-synthesizing enzyme Vp14 and stomatal closure in Zea mays.
    Geilfus CM; Zhang X; Mithöfer A; Burgel L; Bárdos G; Zörb C
    J Exp Bot; 2021 Mar; 72(7):2686-2695. PubMed ID: 33345268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydraulic and chemical signals in the control of leaf expansion and stomatal conductance in soybean exposed to drought stress.
    Liu F; Jensen CR; Andersen MN
    Funct Plant Biol; 2003 Feb; 30(1):65-73. PubMed ID: 32688993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth response of barley and tomato to nitrogen stress and its control by abscisic acid, water relations and photosynthesis.
    Chapin FS; Walter CH; Clarkson DT
    Planta; 1988 Mar; 173(3):352-66. PubMed ID: 24226542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How the roots contribute to the ability of Phaseolus vulgaris L. to cope with chilling-induced water stress.
    Vernieri P; Lenzi A; Figaro M; Tognoni F; Pardossi A
    J Exp Bot; 2001 Nov; 52(364):2199-206. PubMed ID: 11604459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and metabolism of abscisic acid in detached leaves of Phaseolus vulgaris L. after loss and recovery of turgor.
    Pierce M; Raschke K
    Planta; 1981 Oct; 153(2):156-65. PubMed ID: 24276766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early changes of the pH of the apoplast are different in leaves, stem and roots of Vicia faba L. under declining water availability.
    Karuppanapandian T; Geilfus CM; Mühling KH; Novák O; Gloser V
    Plant Sci; 2017 Feb; 255():51-58. PubMed ID: 28131341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of ionic activities in the apoplast of the sub-stomatal cavity of intact Vicia faba leaves during stomatal closure evoked by ABA and darkness.
    Felle HH; Hanstein S; Steinmeyer R; Hedrich R
    Plant J; 2000 Nov; 24(3):297-304. PubMed ID: 11069703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.