These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 16664365)

  • 1. Effect of Carbonic Anhydrase Inhibitors on Inorganic Carbon Accumulation by Chlamydomonas reinhardtii.
    Moroney JV; Husic HD; Tolbert NE
    Plant Physiol; 1985 Sep; 79(1):177-83. PubMed ID: 16664365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracellular carbonic anhydrase facilitates carbon dioxide availability for photosynthesis in the marine dinoflagellate prorocentrum micans.
    Nimer NA; Brownlee C; Merrett MJ
    Plant Physiol; 1999 May; 120(1):105-12. PubMed ID: 10318688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An anaplerotic role for mitochondrial carbonic anhydrase in Chlamydomonas reinhardtii.
    Giordano M; Norici A; Forssen M; Eriksson M; Raven JA
    Plant Physiol; 2003 Aug; 132(4):2126-34. PubMed ID: 12913167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for a plasmalemma-based CO2 concentrating mechanism in Laminaria saccharina.
    Mercado JM; Andría JR; Pérez-Llorens JL; Vergara JJ; Axelsson L
    Photosynth Res; 2006 Jun; 88(3):259-68. PubMed ID: 16691369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photosynthetic carbon acquisition in Sargassum henslowianum (Fucales, Phaeophyta), with special reference to the comparison between the vegetative and reproductive tissues.
    Zou D; Gao K; Chen W
    Photosynth Res; 2011 Feb; 107(2):159-68. PubMed ID: 21302029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbonic anhydrases in the cell wall and plasma membrane of
    Weerasooriya HN; Longstreth DJ; DiMario RJ; Rosati VC; Cassel BA; Moroney JV
    Front Mol Biosci; 2024; 11():1267046. PubMed ID: 38455761
    [No Abstract]   [Full Text] [Related]  

  • 7. CAH3 from
    Terentyev VV; Shukshina AK
    Cells; 2024 Jan; 13(2):. PubMed ID: 38247801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing photosynthetic CO
    Li D; Dong H; Cao X; Wang W; Li C
    Nat Commun; 2023 Sep; 14(1):5337. PubMed ID: 37660048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. α-CAs from Photosynthetic Organisms.
    Langella E; Di Fiore A; Alterio V; Monti SM; De Simone G; D'Ambrosio K
    Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36233343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Chlamydomonas bZIP transcription factor BLZ8 confers oxidative stress tolerance by inducing the carbon-concentrating mechanism.
    Choi BY; Kim H; Shim D; Jang S; Yamaoka Y; Shin S; Yamano T; Kajikawa M; Jin E; Fukuzawa H; Lee Y
    Plant Cell; 2022 Feb; 34(2):910-926. PubMed ID: 34893905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial carbonic anhydrases are needed for optimal photosynthesis at low CO2 levels in Chlamydomonas.
    Rai AK; Chen T; Moroney JV
    Plant Physiol; 2021 Nov; 187(3):1387-1398. PubMed ID: 34618049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Role of Extracellular Carbonic Anhydrase in Biogeochemical Cycling: Recent Advances and Climate Change Responses.
    Mustaffa NIH; Latif MT; Wurl O
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a CO
    Tsuji Y; Kusi-Appiah G; Kozai N; Fukuda Y; Yamano T; Fukuzawa H
    Mar Biotechnol (NY); 2021 Jun; 23(3):456-462. PubMed ID: 34109463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stress-Related Changes in the Expression and Activity of Plant Carbonic Anhydrases.
    Polishchuk OV
    Planta; 2021 Feb; 253(2):58. PubMed ID: 33532871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photosynthesis of the Cyanidioschyzon merolae cells in blue, red, and white light.
    Parys E; Krupnik T; Kułak I; Kania K; Romanowska E
    Photosynth Res; 2021 Jan; 147(1):61-73. PubMed ID: 33231791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in understanding the physiological role and locations of carbonic anhydrases in C3 plant cells.
    Rudenko NN; Ignatova LK; Nadeeva-Zhurikova EM; Fedorchuk TP; Ivanov BN; Borisova-Mubarakshina MM
    Protoplasma; 2021 Mar; 258(2):249-262. PubMed ID: 33118061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracellular carbonic anhydrase: Method development and its application to natural seawater.
    Mustaffa NIH; Striebel M; Wurl O
    Limnol Oceanogr Methods; 2017 May; 15(5):503-517. PubMed ID: 30828269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic changes in carbonate chemistry in the microenvironment around single marine phytoplankton cells.
    Chrachri A; Hopkinson BM; Flynn K; Brownlee C; Wheeler GL
    Nat Commun; 2018 Jan; 9(1):74. PubMed ID: 29311545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of CO2-induced seawater acidification on growth, photosynthesis and inorganic carbon acquisition of the harmful bloom-forming marine microalga, Karenia mikimotoi.
    Hu S; Zhou B; Wang Y; Wang Y; Zhang X; Zhao Y; Zhao X; Tang X
    PLoS One; 2017; 12(8):e0183289. PubMed ID: 28813504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased temperature and CO2 alleviate photoinhibition in Desmarestia anceps: from transcriptomics to carbon utilization.
    Iñiguez C; Heinrich S; Harms L; Gordillo FJL
    J Exp Bot; 2017 Jun; 68(14):3971-3984. PubMed ID: 28575516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.