BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 16664577)

  • 1. Evidence for a specific uptake system for iron phytosiderophores in roots of grasses.
    Römheld V; Marschner H
    Plant Physiol; 1986 Jan; 80(1):175-80. PubMed ID: 16664577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The root-hairless barley mutant brb used as model for assessment of role of root hairs in iron accumulation.
    Zuchi S; Cesco S; Gottardi S; Pinton R; Römheld V; Astolfi S
    Plant Physiol Biochem; 2011 May; 49(5):506-12. PubMed ID: 21236691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competition between micro-organisms and roots of barley and sorghum for iron accumulated in the root apoplasm.
    Wirén NV; Römheld V; Shioiri T; Marschner H
    New Phytol; 1995 Aug; 130(4):511-521. PubMed ID: 33874479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of AhFRO1, an Fe(III)-chelate reductase of peanut, during iron deficiency stress and intercropping with maize.
    Ding H; Duan L; Wu H; Yang R; Ling H; Li WX; Zhang F
    Physiol Plant; 2009 Jul; 136(3):274-83. PubMed ID: 19453500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake.
    Curie C; Panaviene Z; Loulergue C; Dellaporta SL; Briat JF; Walker EL
    Nature; 2001 Jan; 409(6818):346-9. PubMed ID: 11201743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron acquisition by phytosiderophores contributes to cadmium tolerance.
    Meda AR; Scheuermann EB; Prechsl UE; Erenoglu B; Schaaf G; Hayen H; Weber G; von Wirén N
    Plant Physiol; 2007 Apr; 143(4):1761-73. PubMed ID: 17337530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of two novel phytosiderophores secreted by perennial grasses.
    Ueno D; Rombolà AD; Iwashita T; Nomoto K; Ma JF
    New Phytol; 2007; 174(2):304-310. PubMed ID: 17388893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional and physiological analyses of Fe deficiency response in maize reveal the presence of Strategy I components and Fe/P interactions.
    Zanin L; Venuti S; Zamboni A; Varanini Z; Tomasi N; Pinton R
    BMC Genomics; 2017 Feb; 18(1):154. PubMed ID: 28193158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of nitrogen on root release of phytosiderophores and root uptake of Fe(III)-phytosiderophore in Fe-deficient wheat plants.
    Aciksoz SB; Ozturk L; Gokmen OO; Römheld V; Cakmak I
    Physiol Plant; 2011 Jul; 142(3):287-96. PubMed ID: 21338370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in organic compounds secreted by roots in two Poaceae species (Hordeum vulgare and Polypogon monspenliensis) subjected to iron deficiency.
    Nakib D; Slatni T; Di Foggia M; Rombolà AD; Abdelly C
    J Plant Res; 2021 Jan; 134(1):151-163. PubMed ID: 33411147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time course analysis of gene expression over 24 hours in Fe-deficient barley roots.
    Nagasaka S; Takahashi M; Nakanishi-Itai R; Bashir K; Nakanishi H; Mori S; Nishizawa NK
    Plant Mol Biol; 2009 Mar; 69(5):621-31. PubMed ID: 19089316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induced activity of adenine phosphoribosyltransferase (APRT) in iron-deficiency barley roots: a possible role for phytosiderophore production.
    Itai R; Suzuki K; Yamaguchi H; Nakanishi H; Nishizawa NK; Yoshimura E; Mori S
    J Exp Bot; 2000 Jul; 51(348):1179-88. PubMed ID: 10937693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Role of Ligand Exchange in the Uptake of Iron from Microbial Siderophores by Gramineous Plants.
    Yehuda Z; Shenker M; Romheld V; Marschner H; Hadar Y; Chen Y
    Plant Physiol; 1996 Nov; 112(3):1273-1280. PubMed ID: 12226445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roots of Iron-Efficient Maize also Absorb Phytosiderophore-Chelated Zinc.
    Von Wiren N; Marschner H; Romheld V
    Plant Physiol; 1996 Aug; 111(4):1119-1125. PubMed ID: 12226351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytosiderophores influence on cadmium mobilization and uptake by wheat and barley plants.
    Shenker M; Fan TW; Crowley DE
    J Environ Qual; 2001; 30(6):2091-8. PubMed ID: 11790018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of plant growth promoting traits of bacterial isolates from the rhizosphere of barley (Hordeum vulgare L.) and tomato (Solanum lycopersicon L.) grown under Fe sufficiency and deficiency.
    Scagliola M; Pii Y; Mimmo T; Cesco S; Ricciuti P; Crecchio C
    Plant Physiol Biochem; 2016 Oct; 107():187-196. PubMed ID: 27295343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron deficiency tolerance traits in wild (Hordeum maritimum) and cultivated barley (Hordeum vulgare).
    Yousfi S; Rabhi M; Abdelly C; Gharsalli M
    C R Biol; 2009 Jun; 332(6):523-33. PubMed ID: 19520315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of iron uptake by peanut plants : I. Fe reduction, chelate splitting, and release of phenolics.
    Römheld V; Marschner H
    Plant Physiol; 1983 Apr; 71(4):949-54. PubMed ID: 16662934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of Yellow Striped Mutants of
    Chan-Rodriguez D; Walker EL
    Front Plant Sci; 2018; 9():157. PubMed ID: 29515599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of three safeners on sulfur assimilation and iron deficiency response in barley (Hordeum vulgare) plants.
    Bartucca ML; Celletti S; Astolfi S; Mimmo T; Cesco S; Panfili I; Del Buono D
    Pest Manag Sci; 2017 Jan; 73(1):240-245. PubMed ID: 27061021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.