These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 16664827)

  • 1. Respiratory CO(2) as Carbon Source for Nocturnal Acid Synthesis at High Temperatures in Three Species Exhibiting Crassulacean Acid Metabolism.
    Winter K; Schröppel-Meier G; Caldwell MM
    Plant Physiol; 1986 Jun; 81(2):390-4. PubMed ID: 16664827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-Stimulated Burst of Carbon Dioxide Uptake following Nocturnal Acidification in the Crassulacean Acid Metabolism Plant Kalanchoë diagremontiana.
    Winter K; Tenhunen JD
    Plant Physiol; 1982 Dec; 70(6):1718-22. PubMed ID: 16662751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the nature of facultative and constitutive CAM: environmental and developmental control of CAM expression during early growth of Clusia, Kalanchöe, and Opuntia.
    Winter K; Garcia M; Holtum JA
    J Exp Bot; 2008; 59(7):1829-40. PubMed ID: 18440928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The effect of light and temperature of the CO
    Schulze ED
    Oecologia; 1972 Sep; 9(3):235-258. PubMed ID: 28313125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationships between Photosynthetically Active Radiation, Nocturnal Acid Accumulation, and CO(2) Uptake for a Crassulacean Acid Metabolism Plant, Opuntia ficus-indica.
    Nobel PS; Hartsock TL
    Plant Physiol; 1983 Jan; 71(1):71-5. PubMed ID: 16662802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Short-Term Regulation of Crassulacean Acid Metabolism Activity in a Tropical Hemiepiphyte, Clusia uvitana.
    Zotz G; Winter K
    Plant Physiol; 1993 Jul; 102(3):835-841. PubMed ID: 12231870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A one-year study on carbon, water and nutrient relationships in a tropical C
    Zotz G; Winter K
    New Phytol; 1994 May; 127(1):45-60. PubMed ID: 33874396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Irrigation magnifies CAM-photosynthesis in Opuntia basilaris (Cactaceae).
    Hanscom Z; Ting IP
    Oecologia; 1978 Jan; 33(1):1-15. PubMed ID: 28309263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of salinity, crassulacean acid metabolism and plant age on the carbon isotope composition of Mesembryanthemum crystallinum L., a halophytic C(3)-CAM species.
    Winter K; Holtum JA
    Planta; 2005 Sep; 222(1):201-9. PubMed ID: 15968514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon Dioxide and Water Vapor Exchange in the Crassulacean Acid Metabolism Plant Kalanchoë pinnáta during a Prolonged Light Period: METABOLIC AND STOMATAL CONTROL OF CARBON METABOLISM.
    Winter K
    Plant Physiol; 1980 Nov; 66(5):917-21. PubMed ID: 16661552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. C(3) Photosynthesis and Crassulacean Acid Metabolism in a Kansas Rock Outcrop Succulent, Talinum calycinum Engelm. (Portulacaceae).
    Martin CE; Zee AK
    Plant Physiol; 1983 Nov; 73(3):718-23. PubMed ID: 16663289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The subdominant status of Echinocereus viridiflorus and Mammillaria vivipara in the shortgrass prairie: The role of temperature and water effects on gas exchange.
    Green JM; Williams GJ
    Oecologia; 1982 Jan; 52(1):43-48. PubMed ID: 28310107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crassulacean Acid Metabolism in the Epiphyte Tillandsia usneoides L. (Spanish Moss) : RESPONSES OF CO(2) EXCHANGE TO CONTROLLED ENVIRONMENTAL CONDITIONS.
    Martin CE; Siedow JN
    Plant Physiol; 1981 Aug; 68(2):335-9. PubMed ID: 16661912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The contribution of weak CAM to the photosynthetic metabolic activities of a bromeliad species under water deficit.
    Pikart FC; Marabesi MA; Mioto PT; Gonçalves AZ; Matiz A; Alves FRR; Mercier H; Aidar MPM
    Plant Physiol Biochem; 2018 Feb; 123():297-303. PubMed ID: 29278846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facultative CAM photosynthesis (crassulacean acid metabolism) in four species of Calandrinia, ephemeral succulents of arid Australia.
    Holtum JAM; Hancock LP; Edwards EJ; Winter K
    Photosynth Res; 2017 Oct; 134(1):17-25. PubMed ID: 28871459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resistance Analysis of Nocturnal Carbon Dioxide Uptake by a Crassulacean Acid Metabolism Succulent, Agave deserti.
    Nobel PS; Hartsock TL
    Plant Physiol; 1978 Apr; 61(4):510-4. PubMed ID: 16660326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating diel starch metabolism with the circadian and environmental regulation of Crassulacean acid metabolism in Mesembryanthemum crystallinum.
    Dodd AN; Griffiths H; Taybi T; Cushman JC; Borland AM
    Planta; 2003 Mar; 216(5):789-97. PubMed ID: 12624766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Initial net CO2 uptake responses and root growth for a CAM community placed in a closed environment.
    Nobel PS; Bobich EG
    Ann Bot; 2002 Nov; 90(5):593-8. PubMed ID: 12466099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light and dark CO
    Winter K; Zotz G; Baur B; Dietz KJ
    Oecologia; 1992 Aug; 91(1):47-51. PubMed ID: 28313372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Eco-physiological investigations on wild and cultivated plants in the Negev Desert : II. The influence of climatic factors on carbon dioxide exchange and transpiration at the end of the dry period].
    Schulze E-; Lange OL; Koch W
    Oecologia; 1972 Dec; 8(4):334-355. PubMed ID: 28311256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.