These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 16664902)

  • 41. 4,4,4-trifluoro-3-(indole-3-)butyric acid promotes root elongation in Lactuca sativa independent of ethylene synthesis and pH.
    Zhang N; Hasenstein KH
    Physiol Plant; 2002 Nov; 116(3):383-8. PubMed ID: 12542053
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Separation of Light-Induced [C]ent-Kaurene Metabolism and Light-Induced Germination in Grand Rapids Lettuce Seeds.
    Hazebroek JP; Coolbaugh RC
    Plant Physiol; 1991 Jul; 96(3):837-42. PubMed ID: 16668262
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Influence of After-ripening on Phytochrome Control of Seed Germination in Two Varieties of Lettuce (Lactuca sativa L.).
    Suzuki Y; Soejima Y; Matsui T
    Plant Physiol; 1980 Dec; 66(6):1200-1. PubMed ID: 16661604
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Germination of photoblastic lettuce seeds is regulated via the control of endogenous physiologically active gibberellin content, rather than of gibberellin responsiveness.
    Sawada Y; Katsumata T; Kitamura J; Kawaide H; Nakajima M; Asami T; Nakaminami K; Kurahashi T; Mitsuhashi W; Inoue Y; Toyomasu T
    J Exp Bot; 2008; 59(12):3383-93. PubMed ID: 18653696
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Quantitative trait loci associated with seed and seedling traits in Lactuca.
    Argyris J; Truco MJ; Ochoa O; Knapp SJ; Still DW; Lenssen GM; Schut JW; Michelmore RW; Bradford KJ
    Theor Appl Genet; 2005 Nov; 111(7):1365-76. PubMed ID: 16177902
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hormone-solute interactions in the lettuce hypocotyl hook.
    Poovaiah BW; Leopold AC
    Plant Physiol; 1974 Sep; 54(3):289-93. PubMed ID: 16658876
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Preparation of 2H-furo[2,3-c]pyran-2-one derivatives and evaluation of their germination-promoting activity.
    Flematti GR; Goddard-Borger ED; Merritt DJ; Ghisalberti EL; Dixon KW; Trengove RD
    J Agric Food Chem; 2007 Mar; 55(6):2189-94. PubMed ID: 17316021
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A role for α-galactosidase in the degradation of the endosperm cell walls of lettuce seeds, cv. Grand Rapids.
    Leung DW; Bewley JD
    Planta; 1983 Apr; 157(3):274-7. PubMed ID: 24264159
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Reversal of induced dormancy in lettuce by ethylene, kinetin, and gibberellic Acid.
    Dunlap JR; Morgan PW
    Plant Physiol; 1977 Aug; 60(2):222-4. PubMed ID: 16660064
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Abscisic Acid Is an Endogenous Inhibitor in the Regulation of Mannanase Production by Isolated Lettuce (Lactuca sativa cv Grand Rapids) Endosperms.
    Dulson J; Bewley JD; Johnston RN
    Plant Physiol; 1988 Jul; 87(3):660-5. PubMed ID: 16666203
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Photosensitive site in lettuce seeds.
    IKUMA H; THIMANN KV
    Science; 1959 Sep; 130(3375):568-9. PubMed ID: 13852662
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of ethylene and carbon dioxide on the germination of osmotically inhibited lettuce seed.
    Negm FB; Smith OE
    Plant Physiol; 1978 Oct; 62(4):473-6. PubMed ID: 16660541
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Deactivation of gibberellin by 2-oxidation during germination of photoblastic lettuce seeds.
    Nakaminami K; Sawada Y; Suzuki M; Kenmoku H; Kawaide H; Mitsuhashi W; Sassa T; Inoue Y; Kamiya Y; Toyomasu T
    Biosci Biotechnol Biochem; 2003 Jul; 67(7):1551-8. PubMed ID: 12913300
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Importance of 'blue' photon levels for lettuce seedlings grown under red-light-emitting diodes.
    Hoenecke ME; Bula RJ; Tibbitts TW
    HortScience; 1992 May; 27(5):427-30. PubMed ID: 11537611
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Studies of the Mechanism of Enhancement of Phytochrome-dependent Lettuce Seed Germination by Prechilling.
    Vander Woude WJ; Toole VK
    Plant Physiol; 1980 Aug; 66(2):220-4. PubMed ID: 16661408
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of Gibberellic Acid, Kinetin, and Ethylene plus Carbon Dioxide on the Thermodormancy of Lettuce Seed (Lactuca sativa L. cv. Mesa 659).
    Keys RD; Smith OE; Kumamoto J; Lyon JL
    Plant Physiol; 1975 Dec; 56(6):826-9. PubMed ID: 16659403
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Water Content and Phytochrome-induced Potential Germination Responses in Lettuce Seeds.
    Hsiao AI; Vidaver W
    Plant Physiol; 1971 Feb; 47(2):186-8. PubMed ID: 16657591
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Far-red Sensitive Dark Processes Essential for Light- and Gibberellin-induced Germination of Lettuce Seed.
    Negbi M; Black M; Bewley JD
    Plant Physiol; 1968 Jan; 43(1):35-40. PubMed ID: 16656733
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Abscisic acid as an endogenous component in lettuce fruits, Lactuca sativa L. cv. Grand Rapids. Does it control thermodormancy?
    Berrie AM; Robertson J
    Planta; 1976 Jan; 131(3):211-5. PubMed ID: 24424821
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dependence of gibberellic acid-induced dark germination of lettuce seed on RNA synthesis.
    Khan AA
    Planta; 1966 Sep; 72(3):284-8. PubMed ID: 24554268
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.