BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 16664934)

  • 1. A novel sucrose synthase pathway for sucrose degradation in cultured sycamore cells.
    Huber SC; Akazawa T
    Plant Physiol; 1986 Aug; 81(4):1008-13. PubMed ID: 16664934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of Sucrolysis via the Uridine Diphosphate and Pyrophosphate-Dependent Sucrose Synthase Pathway.
    Xu DP; Sung SJ; Loboda T; Kormanik PP; Black CC
    Plant Physiol; 1989 Jun; 90(2):635-42. PubMed ID: 16666820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymes of sucrose and hexose metabolism in developing kernels of two inbreds of maize.
    Doehlert DC; Kuo TM; Felker FC
    Plant Physiol; 1988 Apr; 86(4):1013-9. PubMed ID: 16666024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sucrose metabolism in lima bean seeds.
    Xu DP; Sung SJ; Black CC
    Plant Physiol; 1989 Apr; 89(4):1106-16. PubMed ID: 16666672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymes of sucrose breakdown in soybean nodules: alkaline invertase.
    Morell M; Copeland L
    Plant Physiol; 1984 Apr; 74(4):1030-4. PubMed ID: 16663498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sucrose metabolic pathways in sweetgum and pecan seedlings.
    Sung SS; Kormanik PP; Xu DP; Black CC
    Tree Physiol; 1989 Mar; 5(1):39-52. PubMed ID: 14972997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymes Catalyzing the Reversible Conversion of Fructose-6-Phosphate and Fructose-1,6-Bisphosphate in Maize (Zea mays L.) Kernels.
    Tobias RB; Boyer CD; Shannon JC
    Plant Physiol; 1992 May; 99(1):140-5. PubMed ID: 16668841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overexpression of pyrophosphatase leads to increased sucrose degradation and starch synthesis, increased activities of enzymes for sucrose-starch interconversions, and increased levels of nucleotides in growing potato tubers.
    Geigenberger P; Hajirezaei M; Geiger M; Deiting U; Sonnewald U; Stitt M
    Planta; 1998 Jul; 205(3):428-37. PubMed ID: 9640668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization and compartmentation, in green leaves, of hexokinases with different specificities for glucose, fructose, and mannose and for nucleoside triphosphates.
    Schnarrenberger C
    Planta; 1990 May; 181(2):249-55. PubMed ID: 24196745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A source of apparent pyrophosphate:fructose 6-phosphate phosphotransferase activity in rabbit muscle phosphofructokinase.
    Kruger NJ; Dennis DT
    Biochem Biophys Res Commun; 1985 Jan; 126(1):320-6. PubMed ID: 2982370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artifactual detection of ADP-dependent sucrose synthase in crude plant extracts.
    Perata P; Pozueta-Romero J; Yamaguchi J; Akazawa T
    FEBS Lett; 1992 Sep; 309(3):283-7. PubMed ID: 1387619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PPi-dependent phosphofructotransferase (phosphofructokinase) activity in the mollicutes (mycoplasma) Acholeplasma laidlawii.
    Pollack JD; Williams MV
    J Bacteriol; 1986 Jan; 165(1):53-60. PubMed ID: 3001032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vascular cambial sucrose metabolism and growth in loblolly pine (Pinus taeda L.) in relation to transplanting stress.
    Sung SJ; Kormanik PP; Black CC
    Tree Physiol; 1993 Apr; 12(3):243-58. PubMed ID: 14969915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pathways of D-fructose and D-glucose catabolism in marine species of Alcaligenes, Pseudomonas marina, and Alteromonas communis.
    Sawyer MH; Baumann P; Baumann L
    Arch Microbiol; 1977 Mar; 112(2):169-72. PubMed ID: 139858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical Mechanism for Regulation of Sucrose Accumulation in Leaves during Photosynthesis.
    Huber SC
    Plant Physiol; 1989 Oct; 91(2):656-62. PubMed ID: 16667083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sucrose Metabolism in Haloarchaea: Reassessment Using Genomics, Proteomics, and Metagenomics.
    Williams TJ; Allen MA; Liao Y; Raftery MJ; Cavicchioli R
    Appl Environ Microbiol; 2019 Mar; 85(6):. PubMed ID: 30658981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of substrate cycling on the ATP yield of sperm glycolysis.
    Hammerstedt RH; Lardy HA
    J Biol Chem; 1983 Jul; 258(14):8759-68. PubMed ID: 6863309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ADPG formation by the ADP-specific cleavage of sucrose-reassessment of sucrose synthase.
    Pozueta-Romero J; Yamaguchi J; Akazawa T
    FEBS Lett; 1991 Oct; 291(2):233-7. PubMed ID: 1834479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphofructokinase activities in photosynthetic organisms : the occurrence of pyrophosphate-dependent 6-phosphofructokinase in plants and algae.
    Carnal NW; Black CC
    Plant Physiol; 1983 Jan; 71(1):150-5. PubMed ID: 16662776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sucrose Phosphate Synthase, Sucrose Synthase, and Invertase Activities in Developing Fruit of Lycopersicon esculentum Mill. and the Sucrose Accumulating Lycopersicon hirsutum Humb. and Bonpl.
    Miron D; Schaffer AA
    Plant Physiol; 1991 Feb; 95(2):623-7. PubMed ID: 16668028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.