These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 16664940)

  • 1. Malate Metabolism in Leaf Mitochondria from the Crassulacean Acid Metabolism Plant Kalanchoë blossfeldiana Poelln.
    Rustin P; Lance C
    Plant Physiol; 1986 Aug; 81(4):1039-43. PubMed ID: 16664940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in oxidative properties of Kalanchoe blossfeldiana leaf mitochondria during development of Crassulacean acid metabolism.
    Rustin P; Queiroz-Claret C
    Planta; 1985 Jun; 164(3):415-22. PubMed ID: 24249613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decarboxylation of Malate in the Crassulacean Acid Metabolism Plant Bryophyllum (Kalanchoe) fedtschenkoi (Role of NAD-Malic Enzyme).
    Cook RM; Lindsay JG; Wilkins MB; Nimmo HG
    Plant Physiol; 1995 Dec; 109(4):1301-1307. PubMed ID: 12228671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Malate Oxidation in Plant Mitochondria via Malic Enzyme and the Cyanide-insensitive Electron Transport Pathway.
    Rustin P; Moreau F; Lance C
    Plant Physiol; 1980 Sep; 66(3):457-62. PubMed ID: 16661455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Malate Oxidation and Cyanide-Insensitive Respiration in Avocado Mitochondria during the Climacteric Cycle.
    Moreau F; Romani R
    Plant Physiol; 1982 Nov; 70(5):1385-90. PubMed ID: 16662684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial respiration in ME-CAM, PEPCK-CAM, and C₃ succulents: comparative operation of the cytochrome, alternative, and rotenone-resistant pathways.
    Peckmann K; von Willert DJ; Martin CE; Herppich WB
    J Exp Bot; 2012 May; 63(8):2909-19. PubMed ID: 22330897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Malate oxidation, rotenone-resistance, and alternative path activity in plant mitochondria.
    Wiskich JT; Day DA
    Plant Physiol; 1982 Oct; 70(4):959-64. PubMed ID: 16662651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoperiodism and Crassulacean acid metabolism : II. Relations between leaf aging and photoperiod in Crassulacean acid metabolism induction.
    Brulfert J; Guerrier D; Queiroz O
    Planta; 1982 May; 154(4):332-8. PubMed ID: 24276160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of Benzylaminopurine with Electron Transport in Plant Mitochondria during Malate Oxidation.
    Chauveau M; Dizengremel P; Roussaux J
    Plant Physiol; 1983 Dec; 73(4):945-8. PubMed ID: 16663348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Malate metabolism in Hoya carnosa mitochondria and its role in photosynthesis during CAM phase III.
    Hong HT; Nose A; Agarie S; Yoshida T
    J Exp Bot; 2008; 59(7):1819-27. PubMed ID: 18403382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NADP-Utilizing Enzymes in the Matrix of Plant Mitochondria.
    Rasmusson AG; Møller IM
    Plant Physiol; 1990 Nov; 94(3):1012-8. PubMed ID: 16667790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mitochondrial malic enzymes. I. Submitochondrial localization and purification and properties of the NAD(P)+-dependent enzyme from adrenal cortex.
    Mandella RD; Sauer LA
    J Biol Chem; 1975 Aug; 250(15):5877-84. PubMed ID: 238989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Succinate-driven reverse electron transport in the respiratory chain of plant mitochondria. The effects of rotenone and adenylates in relation to malate and oxaloacetate metabolism.
    Rustin P; Lance C
    Biochem J; 1991 Feb; 274 ( Pt 1)(Pt 1):249-55. PubMed ID: 2001241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of bicarbonate and oxaloacetate on malate oxidation by spinach leaf mitochondria.
    Neuburger M; Douce R
    Biochim Biophys Acta; 1980 Feb; 589(2):176-89. PubMed ID: 7356982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane enzymes associated with the dissimilation of some citric acid cycle substrates and production of extracellular oxidation products in chemostat cultures of Pseudomonas fluorescens.
    Lee WS; Cooper JK; Lynch WH
    Can J Microbiol; 1984 Mar; 30(3):396-405. PubMed ID: 6426768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and Oxidative Properties of Intact Mitochondria from the Leaves of Sedum praealtum: A Crassulacean Acid Metabolism Plant.
    Arron GP; Spalding MH; Edwards GE
    Plant Physiol; 1979 Aug; 64(2):182-6. PubMed ID: 16660928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of rotenone on respiration in pea cotyledon mitochondria.
    Johnson-Flanagan AM; Spencer MS
    Plant Physiol; 1981 Dec; 68(6):1211-7. PubMed ID: 16662080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Malate Decarboxylation by Kalanchoë daigremontiana Mitochondria and Its Role in Crassulacean Acid Metabolism.
    Day DA
    Plant Physiol; 1980 Apr; 65(4):675-9. PubMed ID: 16661260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell organelles from crassulacean acid metabolism (CAM) plants : II. Compartmentation of enzymes of the crassulacean acid metabolism.
    Schnarrenberger C; Groß D; Burkhard C; Herbert M
    Planta; 1980 Feb; 147(5):477-84. PubMed ID: 24311172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in the electron transport chain of pea leaf mitochondria metabolizing malate.
    Walker GH; Oliver DJ
    Arch Biochem Biophys; 1983 Sep; 225(2):847-53. PubMed ID: 6625611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.