These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 16664963)

  • 21. De novo assembly and characterization of germinating lettuce seed transcriptome using Illumina paired-end sequencing.
    Liu SJ; Song SH; Wang WQ; Song SQ
    Plant Physiol Biochem; 2015 Nov; 96():154-62. PubMed ID: 26263518
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of Light, Abscisic Acid, and N-Benzyladenine on the Metabolism of [H]Gibberellin A(4) in Seeds and Seedlings of Lettuce, cv. Grand Rapids.
    Durley RC; Bewley JD; Railton ID; Pharis RP
    Plant Physiol; 1976 May; 57(5):699-703. PubMed ID: 16659554
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ethylene synthesis in lettuce seeds: its physiological significance.
    Burdett AN
    Plant Physiol; 1972 Dec; 50(6):719-22. PubMed ID: 16658250
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distinct Metabolome Changes during Seed Germination of Lettuce (
    Wei S; Yang X; Huo G; Ge G; Liu H; Luo L; Hu J; Huang D; Long P
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32098243
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Far-red Sensitive Dark Processes Essential for Light- and Gibberellin-induced Germination of Lettuce Seed.
    Negbi M; Black M; Bewley JD
    Plant Physiol; 1968 Jan; 43(1):35-40. PubMed ID: 16656733
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Physiology of Oil Seeds: IV. Role of Endogenous Ethylene and Inhibitory Regulators during Natural and Induced Afterripening of Dormant Virginia-type Peanut Seeds.
    Ketring DL; Morgan PW
    Plant Physiol; 1972 Sep; 50(3):382-7. PubMed ID: 16658179
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physiology of Oil Seeds: II. Dormancy Release in Virginia-type Peanut Seeds by Plant Growth Regulators.
    Ketring DL; Morgan PW
    Plant Physiol; 1971 Apr; 47(4):488-92. PubMed ID: 16657647
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Alleviation of salt stress-induced inhibition of seed germination in cucumber (Cucumis sativus L.) by ethylene and glutamate.
    Chang C; Wang B; Shi L; Li Y; Duo L; Zhang W
    J Plant Physiol; 2010 Sep; 167(14):1152-6. PubMed ID: 20605252
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An evaluation of 2,5-norbornadiene as a reversible inhibitor of ethylene action in deepwater rice.
    Bleecker AB; Rose-John S; Kende H
    Plant Physiol; 1987 Jun; 84(2):395-8. PubMed ID: 16665450
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alleviating dormancy in Brassica oleracea seeds using NO and KAR1 with ethylene biosynthetic pathway, ROS and antioxidant enzymes modifications.
    Sami A; Riaz MW; Zhou X; Zhu Z; Zhou K
    BMC Plant Biol; 2019 Dec; 19(1):577. PubMed ID: 31870301
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibition of lettuce seed germination by cycloheximide and chloramphenicol is alleviated by kinetin and oxygen.
    Schultz C; Small JG
    Plant Physiol; 1991 Oct; 97(2):836-8. PubMed ID: 16668478
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of phytochrome in an interaction with ethylene and carbon dioxide in overcoming lettuce seed thermodormancy.
    Negm FB; Smith OE; Kumamoto J
    Plant Physiol; 1973 Jun; 51(6):1089-94. PubMed ID: 16658472
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lettuce seed germination: modulation of pregermination protein synthesis by gibberellic Acid, abscisic Acid, and cytokinin.
    Fountain DW; Bewley JD
    Plant Physiol; 1976 Oct; 58(4):530-6. PubMed ID: 16659711
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ethylene, seed germination, and epinasty.
    Stewart ER; Freebairn HT
    Plant Physiol; 1969 Jul; 44(7):955-8. PubMed ID: 16657163
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Temperature and other factors affecting chloramphenicol stimulation of the germination of light-sensitive lettuce seeds.
    Frankland B; Smith H
    Planta; 1967 Dec; 77(4):354-66. PubMed ID: 24522609
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Factors contributing to the regulation of thermoinhibition in Tagetes minuta L.
    Taylor NJ; Hills PN; Gold JD; Stirk WA; van Staden J
    J Plant Physiol; 2005 Nov; 162(11):1270-9. PubMed ID: 16323279
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Roles of gibberellins and abscisic acid in dormancy and germination of red bayberry (Myrica rubra) seeds.
    Chen SY; Kuo SR; Chien CT
    Tree Physiol; 2008 Sep; 28(9):1431-9. PubMed ID: 18595855
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ethylene reduces plant gas exchange and growth of lettuce grown from seed to harvest under hypobaric and ambient total pressure.
    He C; Davies FT
    J Plant Physiol; 2012 Mar; 169(4):369-78. PubMed ID: 22118875
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Germination of salt-stressed seeds as related to the ethylene biosynthesis ability in three Stylosanthes species.
    Silva PO; Medina EF; Barros RS; Ribeiro DM
    J Plant Physiol; 2014 Jan; 171(1):14-22. PubMed ID: 24120532
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rapid identification of lettuce seed germination mutants by bulked segregant analysis and whole genome sequencing.
    Huo H; Henry IM; Coppoolse ER; Verhoef-Post M; Schut JW; de Rooij H; Vogelaar A; Joosen RV; Woudenberg L; Comai L; Bradford KJ
    Plant J; 2016 Nov; 88(3):345-360. PubMed ID: 27406937
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.