These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 16664968)

  • 1. Phototropism in Hypocotyls of Radish : I. Isolation and Identification of Growth Inhibitors, cis- and trans-Raphanusanins and Raphanusamide, Involved in Phototropism of Radish Hypocotyls.
    Hasegawa K; Noguchi H; Iwagawa T; Hase T
    Plant Physiol; 1986 Aug; 81(4):976-9. PubMed ID: 16664968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phototropism in Hypocotyls of Radish : II. Role of cis- and trans-Raphanusanins, and Raphanusamide in Phototropism of Radish Hypocotyls.
    Noguchi H; Nishitani K; Bruinsma J; Hasegawa K
    Plant Physiol; 1986 Aug; 81(4):980-3. PubMed ID: 16664969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phototropism in Hypocotyls of Radish: IV. Flank Growth and Lateral Distribution of cis- and trans-Raphanusanins in the First Positive Phototropic Curvature.
    Hasegawa K; Noguchi H; Tanoue C; Sando S; Takada M; Sakoda M; Hashimoto T
    Plant Physiol; 1987 Oct; 85(2):379-82. PubMed ID: 16665706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phototropism in Hypocotyls of Radish : III. Influence of Unilateral or Bilateral Illumination of Various Light Intensities on Phototropism and Distribution of cis- and trans-Raphanusanins and Raphanusamide.
    Noguchi H; Hasegawa K
    Plant Physiol; 1987 Mar; 83(3):672-5. PubMed ID: 16665305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and identification of a new growth inhibitor, raphanusanin, from radish seedlings and its role in light inhibition of hypocotyl growth.
    Hasegawa K; Shiihara S; Iwagawa T; Hase T
    Plant Physiol; 1982 Aug; 70(2):626-8. PubMed ID: 16662545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phototropic stimulation induces the conversion of glucosinolate to phototropism-regulating substances of radish hypocotyls.
    Hasegawa T; Yamada K; Kosemura S; Yamamura S; Hasegawa K
    Phytochemistry; 2000 Jun; 54(3):275-9. PubMed ID: 10870181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemistry and biology of phototropism-regulating substances in higher plants.
    Yamamura S; Hasegawa K
    Chem Rec; 2001; 1(5):362-72. PubMed ID: 11933243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phototropism involves a lateral gradient of growth inhibitors, not of auxin. A review.
    Bruinsma J; Hasegawa K
    Environ Exp Bot; 1989 Jan; 29(1):25-36. PubMed ID: 11541033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A major factor in gravitropism in radish hypocotyls is the suppression of growth on the upper side of hypocotyls.
    Tokiwa H; Hasegawa T; Yamada K; Shigemori H; Hasegawa K
    J Plant Physiol; 2006 Dec; 163(12):1267-72. PubMed ID: 17126730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction of myrosinase gene expression and myrosinase activity in radish hypocotyls by phototropic stimulation.
    Yamada K; Hasegawa T; Minami E; Shibuya N; Kosemura S; Yamamura S; Hasegawa K
    J Plant Physiol; 2003 Mar; 160(3):255-9. PubMed ID: 12749082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristic Analysis of Trigonelline Contained in
    Sasaki M; Nonoshita Y; Kajiya T; Atsuchi N; Kido M; Chu DC; Juneja LR; Minami Y; Kajiya K
    Nutrients; 2020 Jun; 12(6):. PubMed ID: 32585930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Action spectra for the inhibition of growth in radish hypocotyls.
    Jose AM; Vince-Prue D
    Planta; 1977 Jan; 136(2):131-4. PubMed ID: 24420317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of electrolytes on growth, phototropism, nutation and surface potential in etiolated cucumber seedlings.
    Spalding EP; Cosgrove DJ
    Plant Cell Environ; 1993 May; 16(4):445-51. PubMed ID: 11537719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of copper on pro- and antioxidative reactions in radish (Raphanus sativus L.) in vitro and in vivo.
    Lukatkin A; Egorova I; Michailova I; Malec P; Strzałka K
    J Trace Elem Med Biol; 2014 Jan; 28(1):80-6. PubMed ID: 24315386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of hypergravity on the elongation growth in radish and cucumber hypocotyls.
    Kasahara H; Shiwa M; Takeuchi Y; Yamada M
    J Plant Res; 1995 Mar; 108(1089):59-64. PubMed ID: 11540140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dose-response curves for radish seedling phototropism.
    Everett M
    Plant Physiol; 1974 Sep; 54(3):222-5. PubMed ID: 16658864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct Phylogeographic Structures of Wild Radish (Raphanus sativus L. var. raphanistroides Makino) in Japan.
    Han Q; Higashi H; Mitsui Y; Setoguchi H
    PLoS One; 2015; 10(8):e0135132. PubMed ID: 26247202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulators of cell division in plant tissues. XVI : Metabolism of zeatin by radish cotyledons and hypocotyls.
    Parker CW; Letham DS
    Planta; 1973 Sep; 114(3):199-218. PubMed ID: 24458755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation of monomeric cytochrome f from Japanese radish and a mechanism of autoreduction.
    Tanaka K; Takahashi MA; Asada K
    J Biol Chem; 1978 Oct; 253(20):7397-403. PubMed ID: 701259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide identification and characterization of NBS-encoding genes in Raphanus sativus L. and their roles related to Fusarium oxysporum resistance.
    Ma Y; Chhapekar SS; Lu L; Oh S; Singh S; Kim CS; Kim S; Choi GJ; Lim YP; Choi SR
    BMC Plant Biol; 2021 Jan; 21(1):47. PubMed ID: 33461498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.