BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 16664975)

  • 1. Identification with Monoclonal Antibodies of a Second Antigenic Domain on Avena Phytochrome that Changes upon Its Photoconversion.
    Shimazaki Y; Cordonnier MM; Pratt LH
    Plant Physiol; 1986 Sep; 82(1):109-13. PubMed ID: 16664975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A monoclonal antibody specific for the red-absorbing form of phytochrome.
    Holdsworth ML; Whitelam GC
    Planta; 1987 Dec; 172(4):539-47. PubMed ID: 24226075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A photoreversible circular dichroism spectral change in oat phytochrome is suppressed by a monoclonal antibody that binds near its N-terminus and by chromophore modification.
    Chai YG; Song PS; Cordonnier MM; Pratt LH
    Biochemistry; 1987 Aug; 26(16):4947-52. PubMed ID: 3663636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping of antigenic domains on phytochrome from etiolated Avena sativa L. by immunoblot analysis of proteolytically derived peptides.
    Pratt LH; Cordonnier MM; Lagarias JC
    Arch Biochem Biophys; 1988 Dec; 267(2):723-35. PubMed ID: 2463784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure function studies on phytochrome. Identification of light-induced conformational changes in 124-kDa Avena phytochrome in vitro.
    Lagarias JC; Mercurio FM
    J Biol Chem; 1985 Feb; 260(4):2415-23. PubMed ID: 3882693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of Tobacco Expressing Functional Oat Phytochrome : Domains Responsible for the Rapid Degradation of Pfr Are Conserved between Monocots and Dicots.
    Cherry JR; Hershey HP; Vierstra RD
    Plant Physiol; 1991 Jul; 96(3):775-85. PubMed ID: 16668254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monoclonal antibodies directed to phytochrome from green leaves of Avena sativa L. cross-react weakly or not at all with the phytochrome that is most abundant in etiolated shoots of the same species.
    Pratt LH; Stewart SJ; Shimazaki Y; Wang YC; Cordonnier MM
    Planta; 1991 Apr; 184(1):87-95. PubMed ID: 24193934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Red light-induced formation of ubiquitin-phytochrome conjugates: Identification of possible intermediates of phytochrome degradation.
    Shanklin J; Jabben M; Vierstra RD
    Proc Natl Acad Sci U S A; 1987 Jan; 84(2):359-63. PubMed ID: 16593800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions between native oat phytochrome and tetrapyrroles.
    Singh BR; Song PS
    Biochim Biophys Acta; 1989 Jun; 996(1-2):62-9. PubMed ID: 2736260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discrimination between the red- and far-red-absorbing forms of phytochrome from Avena sativa L. by monoclonal antibodies.
    Thomas B; Penn SE; Butcher GW; Galfre G
    Planta; 1984 Mar; 160(4):382-4. PubMed ID: 24258587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectral Characterization and Proteolytic Mapping of Native 120-Kilodalton Phytochrome from Cucurbita pepo L.
    Vierstra RD; Quail PH
    Plant Physiol; 1985 Apr; 77(4):990-8. PubMed ID: 16664177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytochrome quantitation in crude extracts of Avena by enzyme-linked immunosorbent assay with monoclonal antibodies.
    Shimazaki Y; Cordonnier MM; Pratt LH
    Planta; 1983 Dec; 159(6):534-44. PubMed ID: 24258330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunochemical detection with rabbit polyclonal and mouse monoclonal antibodies of different pools of phytochrome from etiolated and green Avena shoots.
    Shimazaki Y; Pratt LH
    Planta; 1985 Jun; 164(3):333-44. PubMed ID: 24249602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ubiquitin-phytochrome conjugates. Pool dynamics during in vivo phytochrome degradation.
    Jabben M; Shanklin J; Vierstra RD
    J Biol Chem; 1989 Mar; 264(9):4998-5005. PubMed ID: 2538468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photochemistry of 124 kilodalton Avena phytochrome in vitro.
    Vierstra RD; Quail PH
    Plant Physiol; 1983 May; 72(1):264-7. PubMed ID: 16662975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential exposure of aromatic amino acids in the red-light-absorbing and far-red-light-absorbing forms of 124-kDa oat phytochrome.
    Singh BR; Song PS; Eilfeld P; RĂ¼diger W
    Eur J Biochem; 1989 Oct; 184(3):715-21. PubMed ID: 2806252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Native phytochrome: immunoblot analysis of relative molecular mass and in-vitro proteolytic degradation for several plant species.
    Vierstra RD; Cordonnier MM; Pratt LH; Quail PH
    Planta; 1984 May; 160(6):521-8. PubMed ID: 24258779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Avena sativa L. contains three phytochromes, only one of which is abundant in etiolated tissue.
    Wang YC; Stewart SJ; Cordonnier MM; Pratt LH
    Planta; 1991 Apr; 184(1):96-104. PubMed ID: 24193935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physicochemical differences between the red- and the far-red-absorbing forms of phytochrome.
    Hunt RE; Pratt LH
    Biochemistry; 1981 Feb; 20(4):941-5. PubMed ID: 7213624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Red light-induced accumulation of ubiquitin-phytochrome conjugates in both monocots and dicots.
    Jabben M; Shanklin J; Vierstra RD
    Plant Physiol; 1989 Jun; 90(2):380-4. PubMed ID: 16666778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.