These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 16665227)

  • 1. The effect of sodium chloride on solute potential and proline accumulation in soybean leaves.
    Moftah AE; Michel BE
    Plant Physiol; 1987 Feb; 83(2):238-40. PubMed ID: 16665227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential tolerance of 3 self-rooted Citrus limon cultivars to NaCl stress.
    Tsabarducas V; Chatzistathis T; Therios I; Koukourikou-Petridou M; Tananaki C
    Plant Physiol Biochem; 2015 Dec; 97():196-206. PubMed ID: 26476793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Steady state proline levels in salt-shocked barley leaves.
    Voetberg G; Stewart CR
    Plant Physiol; 1984 Nov; 76(3):567-70. PubMed ID: 16663883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of salinity on nodule formation by soybean.
    Singleton PW; Bohlool BB
    Plant Physiol; 1984 Jan; 74(1):72-6. PubMed ID: 16663389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proline accumulation and glutamine synthetase activity are increased by salt-induced proteolysis in cashew leaves.
    Silveira JA; ViƩgas Rde A; da Rocha IM; Moreira AC; Moreira Rde A; Oliveira JT
    J Plant Physiol; 2003 Feb; 160(2):115-23. PubMed ID: 12685027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Mechanism of Abscisic Acid-induced Proline Accumulation in Barley Leaves.
    Stewart CR
    Plant Physiol; 1980 Aug; 66(2):230-3. PubMed ID: 16661410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of NaCl on Proline Synthesis and Utilization in Excised Barley Leaves.
    Buhl MB; Stewart CR
    Plant Physiol; 1983 Jul; 72(3):664-7. PubMed ID: 16663063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid Accumulation of gamma-Aminobutyric Acid and Alanine in Soybean Leaves in Response to an Abrupt Transfer to Lower Temperature, Darkness, or Mechanical Manipulation.
    Wallace W; Secor J; Schrader LE
    Plant Physiol; 1984 May; 75(1):170-5. PubMed ID: 16663565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential sensitivity to chloride and sodium ions in seedlings of Glycine max and G. soja under NaCl stress.
    Luo Q; Yu B; Liu Y
    J Plant Physiol; 2005 Sep; 162(9):1003-12. PubMed ID: 16173461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RAPD markers associated with salt tolerance in soybean genotypes under salt stress.
    Khan F; Hakeem KR; Siddiqi TO; Ahmad A
    Appl Biochem Biotechnol; 2013 May; 170(2):257-72. PubMed ID: 23504565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ureide metabolism in leaves of nitrogen-fixing soybean plants.
    Shelp BJ; Ireland RJ
    Plant Physiol; 1985 Mar; 77(3):779-83. PubMed ID: 16664133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seed priming and foliar application with jasmonic acid enhance salinity stress tolerance of soybean (Glycine max L.) seedlings.
    Sheteiwy MS; Shao H; Qi W; Daly P; Sharma A; Shaghaleh H; Hamoud YA; El-Esawi MA; Pan R; Wan Q; Lu H
    J Sci Food Agric; 2021 Mar; 101(5):2027-2041. PubMed ID: 32949013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Translocation of Sulfate in Soybean (Glycine max L. Merr).
    Smith IK; Lang AL
    Plant Physiol; 1988 Mar; 86(3):798-802. PubMed ID: 16665991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance.
    Chen Z; Cuin TA; Zhou M; Twomey A; Naidu BP; Shabala S
    J Exp Bot; 2007; 58(15-16):4245-55. PubMed ID: 18182428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sodium, Potassium, Chloride, and Betaine Concentrations in Isolated Vacuoles from Salt-Grown Atriplex gmelini Leaves.
    Matoh T; Watanabe J; Takahashi E
    Plant Physiol; 1987 May; 84(1):173-7. PubMed ID: 16665393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved growth of salinity-stressed soybean after inoculation with salt pre-treated mycorrhizal fungi.
    Sharifi M; Ghorbanli M; Ebrahimzadeh H
    J Plant Physiol; 2007 Sep; 164(9):1144-51. PubMed ID: 16919369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Whole Leaf Carbon Exchange Characteristics of Phosphate Deficient Soybeans (Glycine max L.).
    Lauer MJ; Pallardy SG; Blevins DG; Randall DD
    Plant Physiol; 1989 Nov; 91(3):848-54. PubMed ID: 16667147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exogenous proline effects on photosynthetic performance and antioxidant defense system of young olive tree.
    Ben Ahmed C; Ben Rouina B; Sensoy S; Boukhriss M; Ben Abdullah F
    J Agric Food Chem; 2010 Apr; 58(7):4216-22. PubMed ID: 20210359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Utilization of ammonium as a nitrogen source: effects of ambient acidity on growth and nitrogen accumulation by soybean.
    Tolley-Henry L; Raper CD
    Plant Physiol; 1986; 82(1):54-60. PubMed ID: 11539090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential Solute Regulation in Leaf Blades of Various Ages in Salt-Sensitive Wheat and a Salt-Tolerant Wheat x Lophopyrum elongatum (Host) A. Love Amphiploid.
    Colmer TD; Epstein E; Dvorak J
    Plant Physiol; 1995 Aug; 108(4):1715-1724. PubMed ID: 12228575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.