BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 16665305)

  • 1. Phototropism in Hypocotyls of Radish : III. Influence of Unilateral or Bilateral Illumination of Various Light Intensities on Phototropism and Distribution of cis- and trans-Raphanusanins and Raphanusamide.
    Noguchi H; Hasegawa K
    Plant Physiol; 1987 Mar; 83(3):672-5. PubMed ID: 16665305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phototropism in Hypocotyls of Radish : II. Role of cis- and trans-Raphanusanins, and Raphanusamide in Phototropism of Radish Hypocotyls.
    Noguchi H; Nishitani K; Bruinsma J; Hasegawa K
    Plant Physiol; 1986 Aug; 81(4):980-3. PubMed ID: 16664969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phototropism in Hypocotyls of Radish: IV. Flank Growth and Lateral Distribution of cis- and trans-Raphanusanins in the First Positive Phototropic Curvature.
    Hasegawa K; Noguchi H; Tanoue C; Sando S; Takada M; Sakoda M; Hashimoto T
    Plant Physiol; 1987 Oct; 85(2):379-82. PubMed ID: 16665706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phototropism in Hypocotyls of Radish : I. Isolation and Identification of Growth Inhibitors, cis- and trans-Raphanusanins and Raphanusamide, Involved in Phototropism of Radish Hypocotyls.
    Hasegawa K; Noguchi H; Iwagawa T; Hase T
    Plant Physiol; 1986 Aug; 81(4):976-9. PubMed ID: 16664968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phototropic stimulation induces the conversion of glucosinolate to phototropism-regulating substances of radish hypocotyls.
    Hasegawa T; Yamada K; Kosemura S; Yamamura S; Hasegawa K
    Phytochemistry; 2000 Jun; 54(3):275-9. PubMed ID: 10870181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemistry and biology of phototropism-regulating substances in higher plants.
    Yamamura S; Hasegawa K
    Chem Rec; 2001; 1(5):362-72. PubMed ID: 11933243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induction of myrosinase gene expression and myrosinase activity in radish hypocotyls by phototropic stimulation.
    Yamada K; Hasegawa T; Minami E; Shibuya N; Kosemura S; Yamamura S; Hasegawa K
    J Plant Physiol; 2003 Mar; 160(3):255-9. PubMed ID: 12749082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phototropism involves a lateral gradient of growth inhibitors, not of auxin. A review.
    Bruinsma J; Hasegawa K
    Environ Exp Bot; 1989 Jan; 29(1):25-36. PubMed ID: 11541033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and identification of a new growth inhibitor, raphanusanin, from radish seedlings and its role in light inhibition of hypocotyl growth.
    Hasegawa K; Shiihara S; Iwagawa T; Hase T
    Plant Physiol; 1982 Aug; 70(2):626-8. PubMed ID: 16662545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen peroxide mediates high-intensity blue light-induced hypocotyl phototropism of cotton seedlings.
    Lv QY; Zhao QP; Zhu C; Ding M; Chu FY; Li XK; Cheng K; Zhao X
    Stress Biol; 2023 Jul; 3(1):27. PubMed ID: 37676397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A major factor in gravitropism in radish hypocotyls is the suppression of growth on the upper side of hypocotyls.
    Tokiwa H; Hasegawa T; Yamada K; Shigemori H; Hasegawa K
    J Plant Physiol; 2006 Dec; 163(12):1267-72. PubMed ID: 17126730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AtANN1 and AtANN2 are involved in phototropism of etiolated hypocotyls of
    Wang X; Han L; Yin H; Zhao Z; Cao H; Shang Z; Kang E
    AoB Plants; 2022 Feb; 14(1):plab075. PubMed ID: 35079328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth Distribution during Phototropism of Arabidopsis thaliana Seedlings.
    Orbovic V; Poff KL
    Plant Physiol; 1993 Sep; 103(1):157-163. PubMed ID: 12231922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic separation of phototropism from blue-light inhibition of stem elongation.
    Cosgrove DJ
    Photochem Photobiol; 1985; 42(6):745-51. PubMed ID: 11538840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytochrome-mediated phototropism in de-etiolated seedlings : occurrence and ecological significance.
    Ballaré CL; Scopel AL; Radosevich SR; Kendrick RE
    Plant Physiol; 1992 Sep; 100(1):170-7. PubMed ID: 16652942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of the Cotyledons in the Phototropic Response of Lavatera cretica Seedlings.
    Schwartz A; Koller D
    Plant Physiol; 1980 Jul; 66(1):82-7. PubMed ID: 16661400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Raphanusanin-induced genes and the characterization of RsCSN3, a raphanusanin-induced gene in etiolated radish hypocotyls.
    Moehninsi ; Yamada K; Hasegawa T; Shigemori H
    Phytochemistry; 2008 Nov; 69(16):2781-92. PubMed ID: 18952246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of hook position on phototropic and gravitropic curvature by etiolated hypocotyls of Arabidopsis thaliana.
    Khurana JP; Best TR; Poff KL
    Plant Physiol; 1989; 90(2):376-9. PubMed ID: 11537453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PINOID functions in root phototropism as a negative regulator.
    Haga K; Sakai T
    Plant Signal Behav; 2015; 10(5):e998545. PubMed ID: 26039488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the phytochrome and cryptochrome signaling pathways in hypocotyl phototropism.
    Tsuchida-Mayama T; Sakai T; Hanada A; Uehara Y; Asami T; Yamaguchi S
    Plant J; 2010 May; 62(4):653-62. PubMed ID: 20202166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.