These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 16665311)

  • 1. Proline accumulation and its implication in cold tolerance of regenerable maize callus.
    Duncan DR; Widholm JM
    Plant Physiol; 1987 Mar; 83(3):703-8. PubMed ID: 16665311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proline is not the primary determinant of chilling tolerance induced by mannitol or abscisic Acid in regenerable maize callus cultures.
    Duncan DR; Widholm JM
    Plant Physiol; 1991 Apr; 95(4):1284-7. PubMed ID: 16668125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Globulin-1 gene expression in regenerable Zea mays (maize) callus.
    Duncan DR; Kriz AL; Paiva R; Widholm JM
    Plant Cell Rep; 2003 Mar; 21(7):684-9. PubMed ID: 12789419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The production of callus capable of plant regeneration from immature embryos of numerous Zea mays genotypes.
    Duncan DR; Williams ME; Zehr BE; Widholm JM
    Planta; 1985 Aug; 165(3):322-32. PubMed ID: 24241136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of l-aminocyclopropane-l-carboxylic acid, silver nitrate, and norbornadiene on plant regeneration from maize callus cultures.
    Songstad DD; Duncan DR; Widholm JM
    Plant Cell Rep; 1988 Jun; 7(4):262-5. PubMed ID: 24241762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved plant regeneration from maize callus cultures using 6-benzylaminopurine.
    Duncan DR; Widholm JM
    Plant Cell Rep; 1988 Oct; 7(6):452-5. PubMed ID: 24240268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between Proline and Abscisic Acid in the Induction of Chilling Tolerance in Maize Suspension-Cultured Cells.
    Xin Z; Li PH
    Plant Physiol; 1993 Oct; 103(2):607-613. PubMed ID: 12231966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sorbitol as the Primary Carbon Source for the Growth of Embryogenic Callus of Maize.
    Swedlund B; Locy RD
    Plant Physiol; 1993 Dec; 103(4):1339-1346. PubMed ID: 12232027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of Growth, Water Relations, and Proline Accumulation in Sodium Sulfate Tolerant Callus of Brassica napus L. cv Westar (Canola).
    Chandler SF; Thorpe TA
    Plant Physiol; 1987 May; 84(1):106-11. PubMed ID: 16665381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between Stress-Induced ABA and Proline Accumulations and ABA-Induced Proline Accumulation in Excised Barley Leaves.
    Stewart CR; Voetberg G
    Plant Physiol; 1985 Sep; 79(1):24-7. PubMed ID: 16664378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Exogenous Abscisic Acid on Proline Dehydrogenase Activity in Maize (Zea mays L.).
    Dallmier KA; Stewart CR
    Plant Physiol; 1992 Jun; 99(2):762-4. PubMed ID: 16668952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RFLP analysis to identify putative chromosomal regions involved in the anther culture response and callus formation of maize.
    Wan Y; Rocheford TR; Widholm JM
    Theor Appl Genet; 1992 Nov; 85(2-3):360-5. PubMed ID: 24197327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased induction of regenerable callus cultures from cultured kernels of the maize inbred FR27rhm.
    Duncan DR; Singletary GW; Below FE; Widholm JM
    Plant Cell Rep; 1989 Jun; 8(6):350-3. PubMed ID: 24233273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Abscisic Acid-induced chilling tolerance in maize suspension-cultured cells.
    Xin Z; Li PH
    Plant Physiol; 1992 Jun; 99(2):707-11. PubMed ID: 16668943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free proline changes in Pinus taeda L. callus in response to drought stress.
    Newton RJ; Sen S; Puryear JD
    Tree Physiol; 1986 Dec; 1(3):325-32. PubMed ID: 14975886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative trait loci for callus initiation and totipotency in maize (Zea mays L.).
    Krakowsky MD; Lee M; Garay L; Woodman-Clikeman W; Long MJ; Sharopova N; Frame B; Wang K
    Theor Appl Genet; 2006 Sep; 113(5):821-30. PubMed ID: 16896717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hormonal status of maize initial explants and of the embryogenic and non-embryogenic callus cultures derived from them as related to morphogenesis in vitro.
    Jiménez VM; Bangerth F
    Plant Sci; 2001 Jan; 160(2):247-257. PubMed ID: 11164596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osmotic induced stimulation of the reduction of the viability dye 2,3,5-triphenyltetrazolium chloride by maize roots and callus cultures.
    Duncan DR; Widholm JM
    J Plant Physiol; 2004 Apr; 161(4):397-403. PubMed ID: 15128027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proline accumulation and sodium sulfate tolerance in callus cultures of Brassica napus L. cv. Westar.
    Chandler SF; Thorpe TA
    Plant Cell Rep; 1987 Jun; 6(3):176-9. PubMed ID: 24248644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of NaCl and mannitol iso-osmotic stresses on proline and free polyamine levels in embryogenic Fraxinus angustifolia callus.
    Tonon G; Kevers C; Faivre-Rampant O; Grazianil M; Gaspar T
    J Plant Physiol; 2004 Jun; 161(6):701-8. PubMed ID: 15266717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.