These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 16665565)

  • 1. Regulation of Phosphoenolpyruvate Carboxylase from Crassula argentea: Further Evidence on the Dimer-Tetramer Interconversion.
    Wu MX; Wedding RT
    Plant Physiol; 1987 Aug; 84(4):1080-3. PubMed ID: 16665565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of phosphoenolpyruvate carboxylase from Crassula by interconversion of oligomeric forms.
    Wu MX; Wedding RT
    Arch Biochem Biophys; 1985 Aug; 240(2):655-62. PubMed ID: 4026299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of Phosphoenolpyruvate carboxylase from Crassula argentea: effect of incubation with ligands and dilution on oligomeric state, activity, and allosteric properties.
    Meyer CR; Willeford KO; Wedding RT
    Arch Biochem Biophys; 1991 Aug; 288(2):343-9. PubMed ID: 1898033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Malate inhibition of phosphoenolpyruvate carboxylase from crassula.
    Wedding RT; Black MK
    Plant Physiol; 1986 Dec; 82(4):985-90. PubMed ID: 16665178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diurnal regulation of phosphoenolpyruvate carboxylase from crassula.
    Wu MX; Wedding RT
    Plant Physiol; 1985 Mar; 77(3):667-75. PubMed ID: 16664117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of oligomerization in regulation of maize phosphoenolpyruvate carboxylase activity. Influence of Mg-PEP and malate on the oligomeric equilibrium of PEP carboxylase.
    Willeford KO; Wu MX; Meyer CR; Wedding RT
    Biochem Biophys Res Commun; 1990 Apr; 168(2):778-85. PubMed ID: 2334435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of substrate and effector binding sites of phosphoenolpyruvate carboxylase from Crassula argentea. A possible role of phosphoenolpyruvate as substrate and activator.
    Rustin P; Meyer CR; Wedding RT
    J Biol Chem; 1988 Nov; 263(33):17611-4. PubMed ID: 3182864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of Crassula argentea phosphoenolpyruvate carboxylase in relation to temperature.
    Chardot TP; Wedding RT
    Arch Biochem Biophys; 1992 Mar; 293(2):292-7. PubMed ID: 1536564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification, oligomerization state and malate sensitivity of maize leaf phosphoenolpyruvate carboxylase.
    McNaughton GA; Fewson CA; Wilkins MB; Nimmo HG
    Biochem J; 1989 Jul; 261(2):349-55. PubMed ID: 2775222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Malate-Induced Hysteresis of Phosphoenolpyruvate Carboxylase from Crassula argentea.
    Ngam-Ek A; Seery TA; Amis EJ; Grover SD
    Plant Physiol; 1989 Nov; 91(3):954-60. PubMed ID: 16667161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence Study of Chemical Modification of Phosphoenolpyruvate Carboxylase from Crassula argentea.
    Rustin P; Meyer CR; Wedding RT
    Plant Physiol; 1991 Nov; 97(3):1011-6. PubMed ID: 16668484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oligomerization and the sensitivity of phosphoenolpyruvate carboxylase to inactivation by proteinases.
    Wedding RT; Black MK
    Plant Physiol; 1987 Aug; 84(4):979-81. PubMed ID: 16665631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical and Kinetic Properties and Regulation of the NAD Malic Enzyme Purified from Leaves of Crassula argentea.
    Wedding RT; Black MK
    Plant Physiol; 1983 Aug; 72(4):1021-8. PubMed ID: 16663114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of cysteine in activation and allosteric regulation of maize phosphoenolpyruvate carboxylase.
    Chardot TP; Wedding RT
    Plant Physiol; 1992 Feb; 98(2):780-3. PubMed ID: 16668713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of the NAD Malic Enzyme from Crassula.
    Willeford KO; Wedding RT
    Plant Physiol; 1986 Mar; 80(3):792-5. PubMed ID: 16664705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of pH on substrate form specificity of phosphoenolpyruvate carboxylase purified from Crassula argentea.
    Meyer CR; Rustin P; Black MK; Wedding RT
    Arch Biochem Biophys; 1990 May; 278(2):365-72. PubMed ID: 2327793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Diethylpyrocarbonate on the Allosteric Properties of Phosphoenolpyruvate Carboxylase from Crassula argentea.
    Taghizadeh SK; Jacoby FJ; Grover SD
    Plant Physiol; 1991 Apr; 95(4):1237-42. PubMed ID: 16668117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Posttranslational regulation of phosphoenolpyruvate carboxylase in c(4) and crassulacean Acid metabolism plants.
    Jiao JA; Chollet R
    Plant Physiol; 1991 Apr; 95(4):981-5. PubMed ID: 16668131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of the aggregation state of maize phosphoenolpyruvate carboxylase: evidence from dynamic light-scattering measurements.
    Wu MX; Meyer CR; Willeford KO; Wedding RT
    Arch Biochem Biophys; 1990 Sep; 281(2):324-9. PubMed ID: 2393302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Effect of Adenine Nucleotides on Purified Phosphoenolpyruvate Carboxylase from the CAM Plant Crassula argentea.
    Rustin P; Meyer C; Wedding R
    Plant Physiol; 1988 Sep; 88(1):153-7. PubMed ID: 16666257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.