BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 16665659)

  • 1. Membrane deterioration in senescing carnation flowers : coordinated effects of phospholipid degradation and the action of membranous lipoxygenase.
    Fobel M; Lynch DV; Thompson JE
    Plant Physiol; 1987 Sep; 85(1):204-11. PubMed ID: 16665659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipoxygenase-generated hydroperoxides account for the nonphysiological features of ethylene formation from 1-aminocyclopropane-1-carboxylic acid by microsomal membranes of carnations.
    Lynch DV; Sridhara S; Thompson JE
    Planta; 1985 May; 164(1):121-5. PubMed ID: 24249510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acyl chain and head group regulation of phospholipid catabolism in senescing carnation flowers.
    Brown JH; Chambers JA; Thompson JE
    Plant Physiol; 1991 Mar; 95(3):909-16. PubMed ID: 16668071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. THE ROLE OF FREE RADICALS IN SENESCENCE AND WOUNDING.
    Thompson JE; Legge RL; Barber RF
    New Phytol; 1987 Mar; 105(3):317-344. PubMed ID: 33873900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acceleration of membrane senescence in cut carnation flowers by treatment with ethylene.
    Thompson JE; Mayak S; Shinitzky M; Halevy AH
    Plant Physiol; 1982 Apr; 69(4):859-63. PubMed ID: 16662309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular species specificity of phospholipid breakdown in microsomal membranes of senescing carnation flowers.
    Brown JH; Lynch DV; Thompson JE
    Plant Physiol; 1987 Nov; 85(3):679-83. PubMed ID: 16665759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and characterization of lipoxygenase isoforms in senescing carnation petals.
    Rouet-Mayer MA; Bureau JM; Laurière C
    Plant Physiol; 1992 Mar; 98(3):971-8. PubMed ID: 16668773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age-related changes in petal membranes from attached and detached rose flowers.
    Itzhaki H; Borochov A; Mayak S
    Plant Physiol; 1990 Nov; 94(3):1233-6. PubMed ID: 16667822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incorporation of fatty acids by concanavalin A-stimulated lymphocytes and the effect on fatty acid composition and membrane fluidity.
    Calder PC; Yaqoob P; Harvey DJ; Watts A; Newsholme EA
    Biochem J; 1994 Jun; 300 ( Pt 2)(Pt 2):509-18. PubMed ID: 8002957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactive effects of dietary (n-3) polyunsaturated fatty acids and chronic ethanol intoxication on synaptic membrane lipid composition and fluidity in rats.
    Zérouga M; Beaugé F; Niel E; Durand G; Bourre JM
    Biochim Biophys Acta; 1991 Nov; 1086(3):295-304. PubMed ID: 1742321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristics of a membrane-associated lipoxygenase in tomato fruit.
    Todd JF; Paliyath G; Thompson JE
    Plant Physiol; 1990 Nov; 94(3):1225-32. PubMed ID: 16667821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subcellular Localization of Secondary Lipid Metabolites Including Fragrance Volatiles in Carnation Petals.
    Hudak KA; Thompson JE
    Plant Physiol; 1997 Jun; 114(2):705-713. PubMed ID: 12223738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction of Senescence-Like Deterioration of Microsomal Membranes from Cauliflower by Free Radicals Generated during Gamma Irradiation.
    Voisine R; Vézina LP; Willemot C
    Plant Physiol; 1991 Oct; 97(2):545-50. PubMed ID: 16668433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ethylene formation from 1-aminocyclopropane-1-carboxylic acid by microsomal membranes from senescing carnation flowers.
    Mayak S; Legge RL; Thompson JE
    Planta; 1981 Oct; 153(1):49-55. PubMed ID: 24276706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of fatty acids on model cholesterol/phospholipid membranes.
    Hac-Wydro K; Wydro P
    Chem Phys Lipids; 2007 Nov; 150(1):66-81. PubMed ID: 17651712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolism of polyenoic fatty acids by rabbit reticulocytes. Intracellular action of the erythroid lipoxygenase on membrane lipids.
    Kühn H; Belkner J; Wiesner R
    Biomed Biochim Acta; 1990; 49(2-3):S25-30. PubMed ID: 2117447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vitamin D-mediated intestinal calcium transport. Effects of essential fatty acid deficiency and spin label studies of enterocyte membrane lipid fluidity.
    Putkey JA; Spielvogel AM; Sauerheber RD; Dunlap CS; Norman AW
    Biochim Biophys Acta; 1982 May; 688(1):177-90. PubMed ID: 7093274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of phospholipid fatty acids on the kinetics of high and low affinity sites of cytochrome c oxidase.
    Trivedi A; Fantin DJ; Tustanoff ER
    Biochem Cell Biol; 1986 Nov; 64(11):1195-210. PubMed ID: 3030369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manipulation of fatty acid composition of membrane phospholipid and its effects on cell growth in mouse LM cells.
    Doi O; Doi F; Schroeder F; Alberts AW; Vagelos PR
    Biochim Biophys Acta; 1978 May; 509(2):239-50. PubMed ID: 656411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenotypic adaptation of tonoplast fluidity to growth temperature in the CAM plant Kalanchoë daigremontiana ham. et Per. is accompanied by changes in the membrane phospholipid and protein composition.
    Behzadipour M; Ratajczak R; Faist K; Pawlitschek P; Trémolières A; Kluge M
    J Membr Biol; 1998 Nov; 166(1):61-70. PubMed ID: 9784586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.