These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 16665728)
1. Monoclonal Antibodies to Glycoprotein Antigens of a Fungal Plant Pathogen, Phytophthora megasperma f. sp. glycinea. Wycoff KL; Jellison J; Ayers AR Plant Physiol; 1987 Oct; 85(2):508-15. PubMed ID: 16665728 [TBL] [Abstract][Full Text] [Related]
2. Phytoalexin Elicitor Activity of Carbohydrates from Phytophthora megasperma f.sp. glycinea and Other Sources. Keen NT; Yoshikawa M; Wang MC Plant Physiol; 1983 Mar; 71(3):466-71. PubMed ID: 16662850 [TBL] [Abstract][Full Text] [Related]
3. Host-Pathogen Interactions : XX. BIOLOGICAL VARIATION IN THE PROTECTION OF SOYBEANS FROM INFECTION BY PHYTOPHTHORA MEGASPERMA F. SP. GLYCINEA. Desjardins AE; Ross LM; Spellman MW; Darvill AG; Albersheim P Plant Physiol; 1982 May; 69(5):1046-50. PubMed ID: 16662342 [TBL] [Abstract][Full Text] [Related]
4. Effects of R-(1-amino-2-phenylethyl)phosphonic acid on glyceollin accumulation and expression of resistance to Phytophthora megasperma f.sp. glycinea in soybean. Waldmüller T; Grisebach H Planta; 1987 Nov; 172(3):424-30. PubMed ID: 24225928 [TBL] [Abstract][Full Text] [Related]
5. Race-specific molecules that protect soybeans from Phytophthora megasperma var. sojae. Wade M; Albersheim P Proc Natl Acad Sci U S A; 1979 Sep; 76(9):4433-7. PubMed ID: 16592713 [TBL] [Abstract][Full Text] [Related]
6. Increase of chalcone synthase mRNA in pathogen-inoculated soybeans with race-specific resistance is different in leaves and roots. Dhawale S; Souciet G; Kuhn DN Plant Physiol; 1989 Nov; 91(3):911-6. PubMed ID: 16667156 [TBL] [Abstract][Full Text] [Related]
7. Different cell-wall components from Phytophthora megasperma f. sp. glycinea elicit phytoalexin production in soybean and parsley. Parker JE; Hahlbrock K; Scheel D Planta; 1988 Nov; 176(1):75-82. PubMed ID: 24220737 [TBL] [Abstract][Full Text] [Related]
8. The primary structures of one elicitor-active and seven elicitor-inactive hexa(beta-D-glucopyranosyl)-D-glucitols isolated from the mycelial walls of Phytophthora megasperma f. sp. glycinea. Sharp JK; McNeil M; Albersheim P J Biol Chem; 1984 Sep; 259(18):11321-36. PubMed ID: 6470003 [TBL] [Abstract][Full Text] [Related]
9. Host-Pathogen Interactions: X. Fractionation and Biological Activity of an Elicitor Isolated from the Mycelial Walls of Phytophthora megasperma var. sojae. Ayers AR; Ebel J; Valent B; Albersheim P Plant Physiol; 1976 May; 57(5):760-5. PubMed ID: 16659566 [TBL] [Abstract][Full Text] [Related]
10. Monoclonal antibodies to conformational epitopes of the surface glycoprotein of caprine arthritis-encephalitis virus: potential application to competitive-inhibition enzyme-linked immunosorbent assay for detecting antibodies in goat sera. Ozyörük F; Cheevers WP; Hullinger GA; McGuire TC; Hutton M; Knowles DP Clin Diagn Lab Immunol; 2001 Jan; 8(1):44-51. PubMed ID: 11139194 [TBL] [Abstract][Full Text] [Related]
11. Race cultivar-specific differences in callose deposition in soybean roots following infection with Phytophthora megasperma f.sp. glycinea. Bonhoff A; Rieth B; Golecki J; Grisebach H Planta; 1987 Sep; 172(1):101-5. PubMed ID: 24225793 [TBL] [Abstract][Full Text] [Related]
12. Release of highly elicitor-active glucans by germinating zoospores of Phytophthora megasperma f. sp. glycinea. Waldmüller T; Cosio EG; Grisebach H; Ebel J Planta; 1992 Nov; 188(4):498-505. PubMed ID: 24178381 [TBL] [Abstract][Full Text] [Related]
13. Transformation of the oomycete pathogen Phytophthora megasperma f. sp. glycinea occurs by DNA integration into single or multiple chromosomes. Judelson HS; Coffey MD; Arredondo FR; Tyler BM Curr Genet; 1993 Mar; 23(3):211-8. PubMed ID: 8382110 [TBL] [Abstract][Full Text] [Related]
14. Structural features of fungal beta-D-glucans for the efficient inhibition of the initiation of virus infection on Nicotiana tabacum. Rouhier P; Kopp M; Begot V; Bruneteau M; Fritig B Phytochemistry; 1995 May; 39(1):57-62. PubMed ID: 7786491 [TBL] [Abstract][Full Text] [Related]
15. Cloned avirulence genes from the tomato pathogen Pseudomonas syringae pv. tomato confer cultivar specificity on soybean. Kobayashi DY; Tamaki SJ; Keen NT Proc Natl Acad Sci U S A; 1989 Jan; 86(1):157-61. PubMed ID: 16578838 [TBL] [Abstract][Full Text] [Related]
16. Multidrug resistance-associated antigens on drug-sensitive and -resistant human tumour cell lines. Mirski SE; Cole SP Br J Cancer; 1991 Jul; 64(1):15-22. PubMed ID: 1677258 [TBL] [Abstract][Full Text] [Related]
17. New Races of Phytophthora sojae with Rps1-d Virulence. Abney TS; Melgar JC; Richards TL; Scott DH; Grogan J; Young J Plant Dis; 1997 Jun; 81(6):653-655. PubMed ID: 30861852 [TBL] [Abstract][Full Text] [Related]
18. The molecular nature of Fucus serratus sperm surface antigens recognised by monoclonal antibodies FS1 to FS12. Jones JL; Callow JA; Green JR Planta; 1990 Aug; 182(1):64-71. PubMed ID: 24197001 [TBL] [Abstract][Full Text] [Related]
19. Further investigations of race:cultivar-specific induction of enzymes related to phytoalexin biosynthesis in soybean roots following infection with Phytophthora megasperma f.sp. glycinea. Bonhoff A; Loyal R; Feller K; Ebel J; Grisebach H Biol Chem Hoppe Seyler; 1986 Aug; 367(8):797-802. PubMed ID: 3094555 [TBL] [Abstract][Full Text] [Related]
20. Host-Pathogen Interactions: XIII. Extracellular Invertases Secreted by Three Races of a Plant Pathogen Are Glycoproteins Which Possess Different Carbohydrate Structures. Ziegler E; Albersheim P Plant Physiol; 1977 Jun; 59(6):1104-10. PubMed ID: 16660002 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]