These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 16665852)

  • 1. Biosynthesis of Sucrose and Mannitol as a Function of Leaf Age in Celery (Apium graveolens L.).
    Davis JM; Fellman JK; Loescher WH
    Plant Physiol; 1988 Jan; 86(1):129-33. PubMed ID: 16665852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [(14) C]-Assimilate translocation in the light and dark in celery (Apium graveokns) leaves of different ages.
    Davis JM; Loescher WH
    Physiol Plant; 1990 Aug; 79(4):656-62. PubMed ID: 21087275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A pathway for photosynthetic carbon flow to mannitol in celery leaves : activity and localization of key enzymes.
    Rumpho ME; Edwards GE; Loescher WH
    Plant Physiol; 1983 Dec; 73(4):869-73. PubMed ID: 16663332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mannose-6-Phosphate Reductase, a Key Enzyme in Photoassimilate Partitioning, Is Abundant and Located in the Cytosol of Photosynthetically Active Cells of Celery (Apium graveolens L.) Source Leaves.
    Everard JD; Franceschi VR; Loescher WH
    Plant Physiol; 1993 Jun; 102(2):345-356. PubMed ID: 12231825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mannitol Metabolism in Celery Stressed by Excess Macronutrients.
    Stoop J; Pharr DM
    Plant Physiol; 1994 Oct; 106(2):503-511. PubMed ID: 12232345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gas Exchange and Carbon Partitioning in the Leaves of Celery (Apium graveolens L.) at Various Levels of Root Zone Salinity.
    Everard JD; Gucci R; Kann SC; Flore JA; Loescher WH
    Plant Physiol; 1994 Sep; 106(1):281-292. PubMed ID: 12232328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Storage of sugars and mannitol in petioles of celery leaves.
    Keller F; Matile P
    New Phytol; 1989 Nov; 113(3):291-299. PubMed ID: 33874200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Different Carbon Sources on Relative Growth Rate, Internal Carbohydrates, and Mannitol 1-Oxidoreductase Activity in Celery Suspension Cultures.
    Stoop J; Pharr DM
    Plant Physiol; 1993 Nov; 103(3):1001-1008. PubMed ID: 12231996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NADPH supply and mannitol biosynthesis. Characterization, cloning, and regulation of the non-reversible glyceraldehyde-3-phosphate dehydrogenase in celery leaves.
    Gao Z; Loescher WH
    Plant Physiol; 2000 Sep; 124(1):321-30. PubMed ID: 10982446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subcellular concentrations of sugar alcohols and sugars in relation to phloem translocation in Plantago major, Plantago maritima, Prunus persica, and Apium graveolens.
    Nadwodnik J; Lohaus G
    Planta; 2008 Apr; 227(5):1079-89. PubMed ID: 18188589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunolocalization of mannitol dehydrogenase in celery plants and cells.
    Zamski E; Yamamoto YT; Williamson JD; Conkling MA; Pharr DM
    Plant Physiol; 1996 Nov; 112(3):931-8. PubMed ID: 8938403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mannitol Synthesis in Higher Plants : Evidence for the Role and Characterization of a NADPH-Dependent Mannose 6-Phosphate Reductase.
    Loescher WH; Tyson RH; Everard JD; Redgwell RJ; Bieleski RL
    Plant Physiol; 1992 Apr; 98(4):1396-402. PubMed ID: 16668806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional profiling of genes involved in ascorbic acid biosynthesis, recycling, and degradation during three leaf developmental stages in celery.
    Huang W; Wang GL; Li H; Wang F; Xu ZS; Xiong AS
    Mol Genet Genomics; 2016 Dec; 291(6):2131-2143. PubMed ID: 27604234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The sucrose transporter of celery. Identification and expression during salt stress.
    Noiraud N; Delrot S; Lemoine R
    Plant Physiol; 2000 Apr; 122(4):1447-55. PubMed ID: 10759540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of celery (Apium graveolens) mannitol dehydrogenase (Mtd) promoter regulation in Arabidopsis suggests roles for MTD in key environmental and metabolic responses.
    Zamski E; Guo WW; Yamamoto YT; Pharr DM; Williamson JD
    Plant Mol Biol; 2001 Nov; 47(5):621-31. PubMed ID: 11725947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular cloning of mannose-6-phosphate reductase and its developmental expression in celery.
    Everard JD; Cantini C; Grumet R; Plummer J; Loescher WH
    Plant Physiol; 1997 Apr; 113(4):1427-35. PubMed ID: 9112783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence analysis of a mannitol dehydrogenase cDNA from plants reveals a function for the pathogenesis-related protein ELI3.
    Williamson JD; Stoop JM; Massel MO; Conkling MA; Pharr DM
    Proc Natl Acad Sci U S A; 1995 Aug; 92(16):7148-52. PubMed ID: 7638158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elevated CO
    Liu JX; Feng K; Wang GL; Xu ZS; Wang F; Xiong AS
    Plant Physiol Biochem; 2018 Jun; 127():310-319. PubMed ID: 29653434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in Starch Formation and Activities of Sucrose Phosphate Synthase and Cytoplasmic Fructose-1,6-bisphosphatase in Response to Source-Sink Alterations.
    Rufty TW; Huber SC
    Plant Physiol; 1983 Jun; 72(2):474-80. PubMed ID: 16663027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification of NAD-dependent mannitol dehydrogenase from celery suspension cultures.
    Stoop JM; Williamson JD; Conkling MA; Pharr DM
    Plant Physiol; 1995 Jul; 108(3):1219-25. PubMed ID: 7630943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.