These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 16665901)

  • 1. Dihydroxyacetone phosphate reductase in plants.
    Gee RW; Byerrum RU; Gerber DW; Tolbert NE
    Plant Physiol; 1988 Jan; 86(1):98-103. PubMed ID: 16665901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation of dihydroxyacetone phosphate reductase from dunaliella chloroplasts and comparison with isozymes from spinach leaves.
    Gee R; Goyal A; Gerber D; Byerrum RU; Tolbert NE
    Plant Physiol; 1988 Nov; 88(3):896-903. PubMed ID: 16666401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two isozymes of dihydroxyacetone phosphate reductase in dunaliella.
    Gee R; Goyal A; Byerrum RU; Tolbert NE
    Plant Physiol; 1989 Sep; 91(1):345-51. PubMed ID: 16667023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two Isoforms of Dihydroxyacetone Phosphate Reductase from the Chloroplasts of Dunaliella tertiolecta.
    Gee R; Goyal A; Byerrum RU; Tolbert NE
    Plant Physiol; 1993 Sep; 103(1):243-249. PubMed ID: 12231930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinction between Cytosol and Chloroplast Fructose-Bisphosphate Aldolases from Pea, Wheat, and Corn Leaves.
    Schnarrenberger C; Krüger I
    Plant Physiol; 1986 Feb; 80(2):301-4. PubMed ID: 16664617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential inhibition and activation of two leaf dihydroxyacetone phosphate reductases : role of fructose 2,6-bisphosphate.
    Gee RW; Byerrum RU; Gerber DW; Tolbert NE
    Plant Physiol; 1988 Jun; 87(2):379-83. PubMed ID: 16666150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chloroplast phenylalanine ammonia-lyase from spinach leaves : Evidence for light-mediated regulation via the ferredoxin/Thioredoxin system.
    Nishizawa AN; Wolosiuk RA; Buchanan BB
    Planta; 1979 Jan; 145(1):7-12. PubMed ID: 24317559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in the Activity of the Chloroplastic and Cytosolic Forms of Dihydroxyacetone Phosphate Reductase during Maturation of Leaves.
    Gee R; Byerrum RU; Gerber D; Tolbert NE
    Plant Physiol; 1989 Jan; 89(1):305-8. PubMed ID: 16666531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light and thiol activation of maize leaf glycerate kinase : the stimulating effect of reduced thioredoxins and ATP.
    Kleczkowski LA; Randall DD
    Plant Physiol; 1985 Sep; 79(1):274-7. PubMed ID: 16664385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant dihydroxyacetone phosphate reductases : purification, characterization, and localization.
    Kirsch T; Gerber DW; Byerrum RU; Tolbert NE
    Plant Physiol; 1992 Sep; 100(1):352-9. PubMed ID: 16652968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification, subunit structure and immunological comparison of fructose-bisphosphate aldolases from spinach and corn leaves.
    Krüger I; Schnarrenberger C
    Eur J Biochem; 1983 Oct; 136(1):101-6. PubMed ID: 6617652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulation of ammonia and 2-oxoglutarate-dependent o(2) evolution in isolated chloroplasts by dicarboxylates and the role of the chloroplast in photorespiratory nitrogen recycling.
    Woo KC; Osmond CB
    Plant Physiol; 1982 Mar; 69(3):591-6. PubMed ID: 16662255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antigenic relationships between chloroplast and cytosolic fructose-1,6-bisphosphatases.
    Fonollá J; Hermoso R; Carrasco JL; Chueca A; Lázaro JJ; Prado FE; López-Gorgé J
    Plant Physiol; 1994 Feb; 104(2):381-6. PubMed ID: 7512735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and Properties of Mesophyll and Bundle Sheath Cell alpha-Glucan Phosphorylases from Zea mays L. : Equivalence of the Enzymes with the Cytosol and Plastid Phosphorylases from Spinach.
    Mateyka C; Schnarrenberger C
    Plant Physiol; 1988 Feb; 86(2):417-22. PubMed ID: 16665923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon dioxide and nitrite photoassimilatory processes do not intercompete for reducing equivalents in spinach and soybean leaf chloroplasts.
    Robinson JM
    Plant Physiol; 1986 Mar; 80(3):676-84. PubMed ID: 16664684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An NADP/thioredoxin system in leaves: purification and characterization of NADP-thioredoxin reductase and thioredoxin h from spinach.
    Florencio FJ; Yee BC; Johnson TC; Buchanan BB
    Arch Biochem Biophys; 1988 Nov; 266(2):496-507. PubMed ID: 3190242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Betaine aldehyde oxidation by spinach chloroplasts.
    Weigel P; Weretilnyk EA; Hanson AD
    Plant Physiol; 1986 Nov; 82(3):753-9. PubMed ID: 16665106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthesis of Sulfoquinovosyldiacylglycerol in Higher Plants: The Incorporation of SO(4) by Intact Chloroplasts in Darkness.
    Kleppinger-Sparace KF; Mudd JB
    Plant Physiol; 1987 Jul; 84(3):682-7. PubMed ID: 16665502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chloroplast phosphofructokinase: I. Proof of phosphofructokinase activity in chloroplasts.
    Kelly GJ; Latzko E
    Plant Physiol; 1977 Aug; 60(2):290-4. PubMed ID: 16660078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Malate and Dihydroxyacetone Phosphate-dependent Nitrate Reduction in Spinach Leaf Protoplasts.
    Rathnam CK
    Plant Physiol; 1978 Aug; 62(2):220-3. PubMed ID: 16660489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.