These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 16666115)
1. Development of Nitrate Reductase Activity in Expanding Leaves of Nicotiana tabacum in Relation to the Concentration of Nitrate and Potassium. Wakhloo JL; Staudt A Plant Physiol; 1988 May; 87(1):258-63. PubMed ID: 16666115 [TBL] [Abstract][Full Text] [Related]
2. Partitioning of nitrate assimilation among leaves, stems and roots of poplar. Black BL; Fuchigami LH; Coleman GD Tree Physiol; 2002 Jul; 22(10):717-24. PubMed ID: 12091153 [TBL] [Abstract][Full Text] [Related]
3. Tobacco mutants with a decreased number of functional nia genes compensate by modifying the diurnal regulation of transcription, post-translational modification and turnover of nitrate reductase. Scheible WR; González-Fontes A; Morcuende R; Lauerer M; Geiger M; Glaab J; Gojon A; Schulze ED; Stitt M Planta; 1997; 203(3):304-19. PubMed ID: 9431679 [TBL] [Abstract][Full Text] [Related]
4. Vertical Profiles in Concentration of Potassium and Growth in Nicotiana tabacum. Effect of Potassium on Metabolic Proteins in Successive Leaves, and on the Direction of Translocation of (14)C-Photosynthate and its Allocation. Wakhloo JL J Plant Physiol; 1985 Jan; 117(5):383-400. PubMed ID: 23195860 [TBL] [Abstract][Full Text] [Related]
5. Nitrate reductase activity in leaves as a plant physiological indicator of in vivo biological nitrification inhibition by Brachiaria humidicola. Karwat H; Sparke MA; Rasche F; Arango J; Nuñez J; Rao I; Moreta D; Cadisch G Plant Physiol Biochem; 2019 Apr; 137():113-120. PubMed ID: 30772621 [TBL] [Abstract][Full Text] [Related]
6. Seasonal Patterns of Nitrate Reductase and Nitrogenase Activities in Phaseolus vulgaris L. Franco AA; Pereira JC; Neyra CA Plant Physiol; 1979 Mar; 63(3):421-4. PubMed ID: 16660740 [TBL] [Abstract][Full Text] [Related]
7. Expression of leaf nitrate reductase genes from tomato and tobacco in relation to light-dark regimes and nitrate supply. Galangau F; Daniel-Vedele F; Moureaux T; Dorbe MF; Leydecker MT; Caboche M Plant Physiol; 1988 Oct; 88(2):383-8. PubMed ID: 16666313 [TBL] [Abstract][Full Text] [Related]
8. Rapid Modulation of Spinach Leaf Nitrate Reductase Activity by Photosynthesis : I. Modulation in Vivo by CO(2) Availability. Kaiser WM; Brendle-Behnisch E Plant Physiol; 1991 Jun; 96(2):363-7. PubMed ID: 16668194 [TBL] [Abstract][Full Text] [Related]
9. Effects of NO3- availability on NO3- use in seedlings of three woody shrub species. Koyama L; Tokuchi N Tree Physiol; 2003 Mar; 23(4):281-8. PubMed ID: 12566264 [TBL] [Abstract][Full Text] [Related]
10. The activation state of nitrate reductase is not always correlated with total nitrate reductase activity in leaves. Man HM; Abd-El Baki GK ; Stegmann P; Weiner H; Kaiser WM Planta; 1999 Oct; 209(4):462-8. PubMed ID: 10550627 [TBL] [Abstract][Full Text] [Related]
11. Unusual regulatory nitrate reductase activity in cotyledons of Brassica napus seedlings: enhancement of nitrate reductase activity by ammonium supply. Leleu O; Vuylsteker C J Exp Bot; 2004 Apr; 55(398):815-23. PubMed ID: 14990621 [TBL] [Abstract][Full Text] [Related]
12. Nitrate Reductase Activity in Maize (Zea mays L.) Leaves: I. Regulation by Nitrate Flux. Shaner DL; Boyer JS Plant Physiol; 1976 Oct; 58(4):499-504. PubMed ID: 16659704 [TBL] [Abstract][Full Text] [Related]
13. Nitrate Reductase Activity in Maize (Zea mays L.) Leaves: II. Regulation by Nitrate Flux at Low Leaf Water Potential. Shaner DL; Boyer JS Plant Physiol; 1976 Oct; 58(4):505-9. PubMed ID: 16659705 [TBL] [Abstract][Full Text] [Related]
14. Biomass production and nitrate metabolism of Atriplex hortensis L. (C Gebauer G; Schulumacher MI; Krstić B; Rehder H; Ziegler H Oecologia; 1987 May; 72(2):303-314. PubMed ID: 28311555 [TBL] [Abstract][Full Text] [Related]
15. A Role for manganese in the Regulation of Soybean Nitrate Reductase Activity? Leidi EO; Gómez M J Plant Physiol; 1985 Mar; 118(4):335-42. PubMed ID: 23196075 [TBL] [Abstract][Full Text] [Related]
16. Rapid effects of nitrogen form on leaf morphogenesis in tobacco. Walch-Liu P; Neumann G; Bangerth F; Engels C J Exp Bot; 2000 Feb; 51(343):227-37. PubMed ID: 10938829 [TBL] [Abstract][Full Text] [Related]
17. Nitrate Fluxes and Nitrate Reductase Activity of Suspension-Cultured Tobacco Cells (Effects of Internal and External Nitrate Concentrations). Zhang N; MacKown CT Plant Physiol; 1993 Jul; 102(3):851-857. PubMed ID: 12231871 [TBL] [Abstract][Full Text] [Related]
18. Inhibitory effects of elevated endogenous cytokinins on nitrate reductase in ipt-expressing tobacco are eliminated by short-term exposure to benzyladenine. Lexa M; Genkov T; Brzobohatý B Physiol Plant; 2002 Jun; 115(2):284-290. PubMed ID: 12060247 [TBL] [Abstract][Full Text] [Related]
19. Boron deficiency causes a drastic decrease in nitrate content and nitrate reductase activity, and increases the content of carbohydrates in leaves from tobacco plants. Camacho-Cristobal JJ; Gonzalez-Fontes A Planta; 1999 Oct; 209(4):528-36. PubMed ID: 10550635 [TBL] [Abstract][Full Text] [Related]
20. Effect of exogenous and endogenous nitrate concentration on nitrate utilization by dwarf bean. Breteler H; Nissen P Plant Physiol; 1982 Sep; 70(3):754-9. PubMed ID: 16662570 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]