BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 16666140)

  • 1. Starch Biosynthesis in Developing Wheat Grain : Evidence against the Direct Involvement of Triose Phosphates in the Metabolic Pathway.
    Keeling PL; Wood JR; Tyson RH; Bridges IG
    Plant Physiol; 1988 Jun; 87(2):311-9. PubMed ID: 16666140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A study of the rate of recycling of triose phosphates in heterotrophic Chenopodium rubrum cells, potato tubers, and maize endosperm.
    Hatzfeld WD; Stitt M
    Planta; 1990 Jan; 180(2):198-204. PubMed ID: 24201945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzyme activities associated with maize kernel amyloplasts.
    Echeverria E; Boyer CD; Thomas PA; Liu KC; Shannon JC
    Plant Physiol; 1988 Mar; 86(3):786-92. PubMed ID: 16665989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alterations in Carbohydrate Intermediates in the Endosperm of Starch-Deficient Maize (Zea mays L.) Genotypes.
    Tobias RB; Boyer CD; Shannon JC
    Plant Physiol; 1992 May; 99(1):146-52. PubMed ID: 16668842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of Metabolites Associated with Nonaqueously Isolated Starch Granules from Immature Zea mays L. Endosperm.
    Liu TT; Shannon JC
    Plant Physiol; 1981 Mar; 67(3):525-9. PubMed ID: 16661707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of compartmented metabolic fluxes in maize root tips using isotope distribution from 13C- or 14C-labeled glucose.
    Dieuaide-Noubhani M; Raffard G; Canioni P; Pradet A; Raymond P
    J Biol Chem; 1995 Jun; 270(22):13147-59. PubMed ID: 7768910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pathways of starch and sucrose biosynthesis in developing tubers of potato (Solanum tuberosum L.) and seeds of faba bean (Vicia faba L.) : Elucidation by (13)C-nuclear-magnetic-resonance spectroscopy.
    Viola R; Davies HV; Chudeck AR
    Planta; 1991 Jan; 183(2):202-8. PubMed ID: 24193621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Starch synthesis by isolated amyloplasts from wheat endosperm.
    Tyson RH; Ap Rees T
    Planta; 1988 Jul; 175(1):33-8. PubMed ID: 24221626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluoride-Induced Inhibition of Starch Biosynthesis in Developing Potato, Solanum tuberosum L., Tubers Is Associated with Pyrophosphate Accumulation.
    Viola R; Davies HV
    Plant Physiol; 1991 Oct; 97(2):638-43. PubMed ID: 16668446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decreased expression of two key enzymes in the sucrose biosynthesis pathway, cytosolic fructose-1,6-bisphosphatase and sucrose phosphate synthase, has remarkably different consequences for photosynthetic carbon metabolism in transgenic Arabidopsis thaliana.
    Strand A; Zrenner R; Trevanion S; Stitt M; Gustafsson P; Gardeström P
    Plant J; 2000 Sep; 23(6):759-70. PubMed ID: 10998187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymic capacities of amyloplasts from wheat (Triticum aestivum) endosperm.
    Entwistle G; Rees TA
    Biochem J; 1988 Oct; 255(2):391-6. PubMed ID: 2849412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sugar uptake and starch biosynthesis by slices of developing maize endosperm.
    Felker FC; Liu KC; Shannon JC
    Plant Physiol; 1990 Nov; 94(3):996-1001. PubMed ID: 16667881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of low temperature on the respiratory metabolism of carbohydrates by plants.
    ap Rees T; Burrell MM; Entwistle TG; Hammond JB; Kirk D; Kruger NJ
    Symp Soc Exp Biol; 1988; 42():377-93. PubMed ID: 2978665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Starch synthesis in developing wheat grain : The effect of light on endosperm starch synthesis in vitro and in vivo.
    Foxon GA; Catt L; Keeling PL
    Planta; 1990 Apr; 181(1):104-8. PubMed ID: 24196681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple effects of glycerol on plant cell metabolism. Phosphorus-31 nuclear magnetic resonance studies.
    Aubert S; Gout E; Bligny R; Douce R
    J Biol Chem; 1994 Aug; 269(34):21420-7. PubMed ID: 8063774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fructose 2,6-bisphosphate activates pyrophosphate: fructose-6-phosphate 1-phosphotransferase and increases triose phosphate to hexose phosphate cycling in heterotrophic cells.
    Fernie AR; Roscher A; Ratcliffe RG; Kruger NJ
    Planta; 2001 Jan; 212(2):250-63. PubMed ID: 11216846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ADP-glucose drives starch synthesis in isolated maize endosperm amyloplasts: characterization of starch synthesis and transport properties across the amyloplast envelope.
    Möhlmann T; Tjaden J; Henrichs G; Quick WP; Häusler R; Neuhaus HE
    Biochem J; 1997 Jun; 324 ( Pt 2)(Pt 2):503-9. PubMed ID: 9182710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fructose-2,6-bisphosphate, metabolites and 'coarse' control of pyrophosphate: fructose-6-phosphate phosphotransferase during triose-phosphate cycling in heterotrophic cell-suspension cultures of Chenopodium rubrum.
    Hatzfeld WD; Dancer J; Stitt M
    Planta; 1990 Jan; 180(2):205-11. PubMed ID: 24201946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A flux model of glycolysis and the oxidative pentosephosphate pathway in developing Brassica napus embryos.
    Schwender J; Ohlrogge JB; Shachar-Hill Y
    J Biol Chem; 2003 Aug; 278(32):29442-53. PubMed ID: 12759349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosynthesis of Starch in Proplastids of Germinating Ricinus communis Endosperm Tissue.
    Reibach PH; Benedict CR
    Plant Physiol; 1982 Jul; 70(1):252-6. PubMed ID: 16662456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.