These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 16666240)

  • 1. Enzymic Analysis of Feruloylated Arabinoxylans (Feraxan) Derived from Zea mays Cell Walls I : Purification of Novel Enzymes Capable of Dissociating Feraxan Fragments from Zea mays Coleoptile Cell Wall.
    Nishitani K; Nevins DJ
    Plant Physiol; 1988 Aug; 87(4):883-90. PubMed ID: 16666240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymic Analysis of Feruloylated Arabinoxylans (Feraxan) Derived from Zea mays Cell Walls : II. Fractionation and Partial Characterization of Feraxan Fragments Dissociated by a Bacillus subtilis Enzyme (Feraxanase).
    Nishitani K; Nevins DJ
    Plant Physiol; 1989 Sep; 91(1):242-8. PubMed ID: 16667004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymic Analysis of Feruloylated Arabinoxylans (Feraxan) Derived from Zea mays Cell Walls : III. Structural Changes in the Feraxan during Coleoptile Elongation.
    Nishitani K; Nevins DJ
    Plant Physiol; 1990 Jun; 93(2):396-402. PubMed ID: 16667479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymic Dissociation of Zea Shoot Cell Wall Polysaccharides : IV. Dissociation of Glucuronoarabinoxylan by Purified Endo-(1 --> 4)-beta-Xylanase from Bacillus subtilis.
    Kato Y; Nevins DJ
    Plant Physiol; 1984 Jul; 75(3):759-65. PubMed ID: 16663700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative Profiling of Feruloylated Arabinoxylan Side-Chains from Graminaceous Cell Walls.
    Schendel RR; Meyer MR; Bunzel M
    Front Plant Sci; 2015; 6():1249. PubMed ID: 26834763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymic Dissociation of Zea Shoot Cell Wall Polysaccharides : III. Purification and Partial Characterization of an Endo-(1 --> 4)-beta-d-Xylanase from a Bacillus subtilis Enzyme Preparation.
    Kato Y; Nevins DJ
    Plant Physiol; 1984 Jul; 75(3):753-8. PubMed ID: 16663699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell wall composition in juvenile and adult leaves of maize (Zea mays L.).
    Abedon BG; Hatfield RD; Tracy WF
    J Agric Food Chem; 2006 May; 54(11):3896-900. PubMed ID: 16719512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymic dissociation of zea shoot cell wall polysaccharides : I. Preliminary characterization of the water-insoluble fraction of zea shoot cell walls.
    Kato Y; Nevins DJ
    Plant Physiol; 1984 Jul; 75(3):740-4. PubMed ID: 16663697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relevance, structure and analysis of ferulic acid in maize cell walls.
    Bento-Silva A; Vaz Patto MC; do Rosário Bronze M
    Food Chem; 2018 Apr; 246():360-378. PubMed ID: 29291861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Analysis of Secreted Root Slime from Maize (Zea mays L.).
    Bacic A; Moody SF; Clarke AE
    Plant Physiol; 1986 Mar; 80(3):771-7. PubMed ID: 16664700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucuronoxylan xylanohydrolase. A unique xylanase with the requirement for appendant glucuronosyl units.
    Nishitani K; Nevins DJ
    J Biol Chem; 1991 Apr; 266(10):6539-43. PubMed ID: 1901062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of polysaccharide hydrolases involved in autolytic degradation of zea cell walls.
    Nock LP; Smith CJ
    Plant Physiol; 1987 Aug; 84(4):1044-50. PubMed ID: 16665558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uptake and Metabolic Fate of Glucose, Arabinose, and Xylose by Zea mays Coleoptiles in Relation to Cell Wall Synthesis.
    Carpita NC; Brown RA; Weller KM
    Plant Physiol; 1982 May; 69(5):1173-80. PubMed ID: 16662366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fine structural features and antioxidant capacity of ferulated arabinoxylans extracted from nixtamalized maize bran.
    Marquez-Escalante JA; Carvajal-Millan E; Martínez-López AL; Martínez-Robinson KG; Campa-Mada AC; Rascon-Chu A
    J Sci Food Agric; 2023 Jul; 103(9):4584-4591. PubMed ID: 36852427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbohydrase Complexes Rich in Xylanases and Arabinofuranosidases Affect the Autofluorescence Signal and Liberate Phenolic Acids from the Cell Wall Matrix in Wheat, Maize, and Rice Bran: An
    Vangsøe CT; Nørskov NP; Devaux MF; Bonnin E; Bach Knudsen KE
    J Agric Food Chem; 2020 Sep; 68(37):9878-9887. PubMed ID: 32815725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of L-arabinose from corn hull arabinoxylan by Arthrobacter aurescens MK5 α-L-arabinofuranosidase.
    Kurakake M; Takao J; Asano O; Tanimoto H; Komaki T
    J Food Sci; 2011 Mar; 76(2):C231-5. PubMed ID: 21535740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transient Nature of a (1 --> 3), (1 --> 4)-beta-d-Glucan in Zea mays Coleoptile Cell Walls.
    Luttenegger DG; Nevins DJ
    Plant Physiol; 1985 Jan; 77(1):175-8. PubMed ID: 16664003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. beta-d-Glucan Hydrolase Activity in Zea Coleoptile Cell Walls.
    Huber DJ; Nevins DJ
    Plant Physiol; 1980 May; 65(5):768-73. PubMed ID: 16661280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell-wall properties contributing to improved deconstruction by alkaline pre-treatment and enzymatic hydrolysis in diverse maize (Zea mays L.) lines.
    Li M; Heckwolf M; Crowe JD; Williams DL; Magee TD; Kaeppler SM; de Leon N; Hodge DB
    J Exp Bot; 2015 Jul; 66(14):4305-15. PubMed ID: 25871649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of cell wall phenolics during the early remodelling of cellulose-deficient maize cells.
    Martínez-Rubio R; Centeno ML; García-Angulo P; Álvarez JM; Acebes JL; Encina A
    Phytochemistry; 2020 Feb; 170():112219. PubMed ID: 31794882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.