These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 16666258)
61. Analysis of the slow phases of the in vivo chlorophyll fluorescence induction curve. Changes in the redox state of photosystem II electron acceptors and fluorescence emission from photosystems I and II. Bradbury M; Baker NR Biochim Biophys Acta; 1981 May; 635(3):542-51. PubMed ID: 7236677 [TBL] [Abstract][Full Text] [Related]
62. Estimating photosynthetic electron transport via chlorophyll fluorometry without Photosystem II light saturation. Earl HJ; Ennahli S Photosynth Res; 2004; 82(2):177-86. PubMed ID: 16151873 [TBL] [Abstract][Full Text] [Related]
63. Photoinhibition, carotenoid composition and the co-regulation of photochemical and non-photochemical quenching in neotropical savanna trees. Franco AC; Matsubara S; Orthen B Tree Physiol; 2007 May; 27(5):717-25. PubMed ID: 17267362 [TBL] [Abstract][Full Text] [Related]
64. On the relationship between the non-photochemical quenching of the chlorophyll fluorescence and the Photosystem II light harvesting efficiency. A repetitive flash fluorescence induction study. Koblízek M; Kaftan D; Nedbal L Photosynth Res; 2001; 68(2):141-52. PubMed ID: 16228337 [TBL] [Abstract][Full Text] [Related]
65. A comparative study of the photosynthetic capacity in two green tide macroalgae using chlorophyll fluorescence. Wang Y; Qu T; Zhao X; Tang X; Xiao H; Tang X Springerplus; 2016; 5(1):775. PubMed ID: 27386261 [TBL] [Abstract][Full Text] [Related]
66. Dissipation of excess excitation energy by drought-induced nonphotochemical quenching in two species of drought-tolerant moss: desiccation-induced acceleration of photosystem II fluorescence decay. Yamakawa H; Itoh S Biochemistry; 2013 Jul; 52(26):4451-9. PubMed ID: 23750703 [TBL] [Abstract][Full Text] [Related]
67. Spatial-temporal variations in rose leaves under water stress conditions studied by chlorophyll fluorescence imaging. Calatayud A; Roca D; Martínez PF Plant Physiol Biochem; 2006 Oct; 44(10):564-73. PubMed ID: 17064922 [TBL] [Abstract][Full Text] [Related]
68. [PS II photochemical efficiency in flag leaf of wheat varieties and its adaptation to strong sun- light intensity on farmland of Xiangride in Qinghai Province, Northwest China]. Shi SB; Chen WJ; Shi R; Li M; Zhang HG; Sun YN Ying Yong Sheng Tai Xue Bao; 2014 Sep; 25(9):2613-22. PubMed ID: 25757313 [TBL] [Abstract][Full Text] [Related]
69. Enhanced Employment of the Xanthophyll Cycle and Thermal Energy Dissipation in Spinach Exposed to High Light and N Stress. Verhoeven AS; Demmig-Adams B; Adams III WW Plant Physiol; 1997 Mar; 113(3):817-824. PubMed ID: 12223645 [TBL] [Abstract][Full Text] [Related]
70. Partially Dissecting Electron Fluxes in Both Photosystems in Spinach Leaf Disks during Photosynthetic Induction. Zhang MM; Fan DY; Murakami K; Badger MR; Sun GY; Chow WS Plant Cell Physiol; 2019 Oct; 60(10):2206-2219. PubMed ID: 31271439 [TBL] [Abstract][Full Text] [Related]
71. Acute toxicity of excess mercury on the photosynthetic performance of cyanobacterium, S. platensis--assessment by chlorophyll fluorescence analysis. Lu CM; Chau CW; Zhang JH Chemosphere; 2000 Jul; 41(1-2):191-6. PubMed ID: 10819201 [TBL] [Abstract][Full Text] [Related]
72. Electron transport through photosystem II in leaves during light pulses: acceptor resistance increases with nonphotochemical excitation quenching. Laisk A; Oja V Biochim Biophys Acta; 2000 Nov; 1460(2-3):255-67. PubMed ID: 11106767 [TBL] [Abstract][Full Text] [Related]
73. Phototolerance of lichens, mosses and higher plants in an alpine environment: analysis of photoreactions. Heber U; Bilger W; Bligny R; Lange OL Planta; 2000 Nov; 211(6):770-80. PubMed ID: 11144261 [TBL] [Abstract][Full Text] [Related]
74. A few molecules of zeaxanthin per reaction centre of photosystem II permit effective thermal dissipation of light energy in photosystem II of a poikilohydric moss. Bukhov NG; Kopecky J; Pfündel EE; Klughammer C; Heber U Planta; 2001 Apr; 212(5-6):739-48. PubMed ID: 11346947 [TBL] [Abstract][Full Text] [Related]
75. [Effects of light intensity on photosynthetic capacity and light energy allocation in Panax notoginseng.]. Xu XZ; Zhang JY; Zhang GH; Long GQ; Yang SC; Chen ZJ; Wei FG; Chen JW Ying Yong Sheng Tai Xue Bao; 2018 Jan; 29(1):193-204. PubMed ID: 29692028 [TBL] [Abstract][Full Text] [Related]
76. The artificial humic substance HS1500 does not inhibit photosynthesis of the green alga Desmodesmus armatus in vivo but interacts with the photosynthetic apparatus of isolated spinach thylakoids in vitro. Gilbert M; Bährs H; Steinberg CEW; Wilhelm C Photosynth Res; 2018 Sep; 137(3):403-420. PubMed ID: 29777430 [TBL] [Abstract][Full Text] [Related]
77. Photochemical and Nonphotochemical Fluorescence Quenching Processes in the Diatom Phaeodactylum tricornutum. Ting CS; Owens TG Plant Physiol; 1993 Apr; 101(4):1323-1330. PubMed ID: 12231788 [TBL] [Abstract][Full Text] [Related]
78. Cyclic electron flow around photosystem I is enhanced at low pH. Tongra T; Bharti S; Jajoo A Plant Physiol Biochem; 2014 Oct; 83():194-9. PubMed ID: 25164549 [TBL] [Abstract][Full Text] [Related]
79. Fluorescence Quenching and Gas Exchange in a Water Stressed C(3) Plant, Digitalis lanata. Stuhlfauth T; Sültemeyer DF; Weinz S; Fock HP Plant Physiol; 1988 Jan; 86(1):246-50. PubMed ID: 16665875 [TBL] [Abstract][Full Text] [Related]
80. [Characteristics of photosynthesis and light energy partitioning in Amorphophallus xiei grown along a light-intensity gradient.]. Fu Z; Xie SQ; Xu WG; Yan S; Chen JW Ying Yong Sheng Tai Xue Bao; 2016 Apr; 27(4):1177-1188. PubMed ID: 29732774 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]